
 1

A Class Hierarchy Concurrency Control Technique in Object-Oriented
Database Systems

Woochun Jun and Le Gruenwald

Dept. of Computer Science
Univ. of Oklahoma
Norman, OK 73072

gruenwal@cs.ou.edu

Abstract
In this paper, we present a locking-based
concurrency control scheme for object-oriented
databases (OODBs). Our scheme deals with class
hierarchy which is an important property in OODBs.
The existing concurrency controls for a class
hierarchy perform well only for specific
environments. Our scheme is based on so called
special classes and can be used for any applications
with less locking overhead than existing work.

1. Introduction

 In an object-oriented databases (OODBs),
there are two types of access to an object: instance
access methods (instance read and instance write)
and class definition access methods that provide
class definition read and class definition write. [1,2].
Commutativity is a criterion widely used to determine
whether a method can run concurrently with methods
in progress on the same object. Two methods
commute if their execution orders are not important
(i.e., their execution orders do not affect their results).
Two methods conflict with each other if they do not
commute.
 A concurrency control scheme allows
multiusers rapid access to a database but incurs an
overhead whenever it is invoked. This overhead may
have a critical effect on OODBs where many
transactions which consist of method invocations are
long-lived. Thus, reducing the overhead is vital to
improve transaction response time.
 One of the major properties of an OODB is
inheritance. That is, a subclass inherits definitions
defined on its superclasses. Also, there is an is-a
relationship between a subclass and its superclasses.
Thus, an instance of a subclass is a specialization of
its superclasses (and conversely, an instance of a
superclass is a generalization of its subclasses) [5].
This inheritance relationship between classes forms a
class hierarchy. While there are some operations on
only one class such as class definition read or
instance write on one instance, there are two types of

operations on a class hierarchy: class definition write
and instance access to all or some instances of a
given class and its subclasses which we call IACH,
meaning Instance Access to Class Hierarchy. A query
is an example of IACH where a query is defined as
instance read to a given class and its subclasses [5].
Due to inheritance, the definitions of the class’
superclasses should not be modified, while a class
and its instances are being accessed. Also, due to the
is-a relationship between classes, the search space
for a query against a class, C, may include the
instances of all classes in the class hierarchy rooted
at C as well as instances of C. Thus, for a locking
based concurrency control scheme, when a class
definition write or query is requested on some class,
say C, it is necessary to get locks for all subclasses of
C as well as C. We call MCA (Multiple Class Access)
for class definition write and IACHs, and SCA (Single
Class Access) for an operation to only one class such
as class definition read and instance access to a
single class.
 In this paper, we present a locking-based
concurrency control scheme for class hierarchy in
OODBs. There are two approaches in the literature
that deal with class hierarchy, explicit locking and
implicit locking, both will be discussed in Section 2.
These approaches may work well only for specific
applications in OODBs. Explicit locking may have less
locking overhead for transactions concerned only
with SCA. On the other hand, implicit locking may
have less locking overhead for transactions
concerned only with MCA. Our scheme is based on a
so called special class, which will be defined in
Section 3, and which can be used for any applications
with less locking overhead than both explicit locking
and implicit locking.

2. Related Work

 As discussed in Section 1, due to inheritance,
class definition writes and IACHs on a class may
need to access more than one class on a class
hierarchy. There are two major existing approaches to

 2

perform locking on a class hierarchy: explicit locking
[2,10] and implicit locking [5,8,9]. In explicit locking,
for an IACH involving a class, C, and all of its
subclasses, and for a class definition write on a class
C, a lock is set not only on the class C, but also on
each subclass of C on the class hierarchy. For other
types of access such as class definition read and
instance access to a single class, a lock is set for only
the class to be accessed (we call target class). Thus,
for an MCA, transactions accessing a class near the
leaf level of a class hierarchy will require fewer locks
than transactions accessing a class near the root of a
class hierarchy. Another advantage of explicit
locking is that it can treat single inheritance where a
class can inherit the class definition from one
superclass, and multiple inheritance where a class
can inherit the class definition from more than one
superclass, in the same way. However, this technique
increases the number of locks required by
transactions accessing a class at a higher level in the
class hierarchy.
 In implicit locking, setting a lock on a class C
requires extra locking on a path from C to its root as
well as on C. Intention locks [3,7] are put on all the
ancestors of a class before the target class is locked.
An intention lock on a class indicates that some lock
is held on a subclass of the class. For MCA on a
target class, locks are not required for every subclass
of a target class. It is sufficient to put a lock only on
the target class (in single inheritance) or locks on the
target class and subclasses of the target class which
have more than one superclass (in multiple
inheritance) [9]. Thus, it can reduce lock overhead
over explicit locking. But, implicit locking requires a
higher locking cost when a target class is near the leaf
level in the class hierarchy due to intention lock
overhead.

3. Proposed class hierarchy locking scheme

 Our work is to develop a new class hierarchy
locking scheme which can be used for any OODB
applications with less locking overhead than both
existing schemes, explicit locking and implicit locking.
To achieve this, we designate some classes in the
class hierarchy as special classes. We define a
special class (SC) as a class on which class definition
writes or IACHs are performed frequently. For our
concurrency control purpose, how to determine if a
class is a SC or not will be discussed in Section 4.

3.1. Lock Modes

 We adopt instance level granularity for
instance access and entire class object for class
definition access, like Orion [5] and O2 [2]. Below we
show locks needed for different types of instance and
class access. For convenience, we use lower-case
letters and upper-case letters to name locks for an
instance and for a class, respectively.

• instance read
- r lock for target instance
- (for SCA) TR lock means that some (not all)
instances of a target class are r locked. An TR lock is
set on a target class whenever a r lock is set on its
instance.
- (for SCA) IR lock (on target class) means that all
instances are read locked implicitly. Like both explicit
locking and implicit locking, we reduce locking
overhead by setting an IR lock on the target class, not
individual instances, if the majority of instances are
accessed.
- (for MCA) QR (Query Read on a target class) means
that all instances of a target class and its subclasses
are read locked as in implicit locking. We reduce
locking overhead by setting an QR lock on only the
target class, not setting IR lock on the all subclasses
of the target class.
- (for MCA) PQR (Partial Query Read on a target
class) means that some instances of a target class and
its subclasses are read locked. For access to some
instances of a target class and its subclasses, we put
only PQR lock on a target class and each individual
instances to be accessed are r locked.
- An intention lock ISR is set for every SC on the
superclass chain from a target class to its root
whenever IR or QR lock is set on the target class.
- An intention lock ISPR is set for every SC on the
superclass chain from a target class to its root when
TR or PQR lock is set on the target class.

• Instance write
- w lock for target instance
- (for SCA) TW lock (on target class) means that some
(not all) instances of a target class are w locked. An
TW lock is set on a target class whenever w lock is
set on its instance.
- (for SCA) IW lock means that all instances of a
target class are w locked implicitly.
- (for MCA) QW (Query Write on a target class)
means that all instances of a target class and its
subclasses are write locked.
- (for MCA) PQW (Partial Query Write on a target
class) means that some instances of a target class and
its subclasses are write locked. As in PQR lock, we set

 3

only PQW lock on a target class and each individual
instances to be accessed are w locked.
- ISW lock is set for every SC on the superclass chain
from the target class to its root whenever an IW or
QW lock is set on an instance or class.
- An intention lock ISPW is set for every SC on the
superclass chain from a target class to its root when
TW or PQW lock is set on the target class.

• Class definition write: CW (on target class),ISW
(intention lock for each SC on the path from the target
class to its root)

• Class definition read: CR (on target class), ISR
(intention lock for each SC on the path from the target
class to its root)

3.2. Commutativity Relation Table

 In Tables 1 and 2, we provide commutativity
relation among the lock modes introduced above.
Y(Yes) and N (No) stand for commute, and not
commute, respectively.

a) instance

 lock holder

 r w

lock r Y N
requester w N N

Table 1. Commutativity relation for locks on
 instances

b) Class

 As in implicit locking, conflicts between
MCAs, if at least one of the lock holder and requester
requires locks only on class, conflict relationship is
determined directly by read-read, read-write, write-
write conflict. Otherwise (i.e., both require locks on
class as well as instances), conflict is determined on
individual instances. For conflicts between MCA and
intention locks, conflicts are determined as if an
intention lock were an actual real lock. For example,
locking on CW and IMP-S-R on the same class will
cause conflicts. Also, there is no conflict between
SCA and an intention lock.

 lock holder

 C C T I I I Q P T I I I Q
P
 W R R R S S R Q W W S S W
Q
 R P R W P
W
 R W

l CW N N N N N N N N N N N N
N N
o CR N Y Y Y Y Y Y Y

 Y Y Y Y Y Y
c TR N Y Y Y Y Y Y Y
 Y N Y Y N Y
k IR N Y Y Y Y Y Y Y N
N Y Y N N
 ISR N Y Y Y Y Y Y Y Y Y Y
Y N N
r ISPR N Y Y Y Y Y Y Y Y Y Y
Y N Y
e QR N Y Y Y Y Y Y Y N N N
N N N
q PQR N Y Y Y Y Y Y Y Y N N
Y N Y
q TW N Y Y N Y Y N Y Y
N Y Y N Y
e IW N Y N N Y Y N N N
N Y Y N N
s ISW N Y Y Y Y Y N N Y Y Y
Y N N
 t ISPW N Y Y Y Y Y N Y Y Y Y
Y N Y
e QW N Y N N N N N N N
N N N N N
r PQW N Y Y N N Y N Y Y
N N Y N Y

 Table 2. Commutativity table for locks on
 classes

3.3 Class hierarchy locking algorithm

 Our locking-based concurrency control
scheme is based on two-phase locking which requires
each transaction to obtain a read (or write) lock on a
data item before it reads (or writes) that data item, and
not to obtain any more locks after it has released
some lock [4]. For a given lock request on a class, say
Y, we set locks on Y and all classes on the class
hierarchy to which the class Y belongs as follows.

Step 1) locking on SCs
• For each SC (if any) through the superclass chain

of Y, check conflicts and set an intention lock if

 4

it commutes. If it does not commute, block the
lock requester.

Step 2) Locking on a target class
If the lock request is SCA, check conflicts with locks
set by other transactions and set one of T-R, T-W,
IMP-R, IMP-W (depending on the lock request type)
or CR (class definition read) on only the target class Y
if it commutes and set an r or w lock on the instance
to be accessed (which we call target instance) if a
method is invoked on the instance and commute. If it
does not commute, block the requester.
• If the lock request is an MCA, then, from class Y

to the first SC (or leaf class if there is no SC)
through the subclass chain of Y, check conflicts
and set CW, QR, P-QR, QW or P-QW lock on
each class if commute. If the class Y is a SC, then
set a lock only on Y.

• If class Y has more than one subclass, perform
the same step 2) for each subclass of Y.

3) Locks are released only if a transaction is
committed or aborted.
 For the correctness of our scheme, we can
prove it by showing that, for any lock requester, any
conflict with a lock holder is always detected [6].

4. Special Class Assignment

 Assume that we have information on
frequencies of access to each class in an OODB. For
our scheme, we need to know only two types of
access frequencies to each class: SCA and MCA.
With those access frequencies for each class, we
determine if the class is designated as a SC or not as
follows.
Starting from each leaf class until all classes are
checked.
step 1) If a class, say C, is a leaf, then do not
 designate it as a SC.
 If a class’ subclasses have been already
 checked (i.e., all of the subclasses have been
 determined for SC assignment),
 do the following:
 for classes C and all of the subclasses,
 calculate the number of locks (N1)
 when the class is designated as a SC
 calculate the number of locks (N2)
 when the class is not designated as a SC
step 2) Designate it as a SC only if N1 < N2 . That is,
the class can be a SC only if the number of locks can
be reduced by doing so.

 We can show that our scheme performs better
than both explicit locking and implicit locking. That is,
assuming that access frequencies are stable for each
class, we show that our scheme incurs fewer or at
least equal number of locks than both explicit locking
and implicit locking. We omit the formal proof due to
lack of space.

5. Further work

 In our work, locking granularity for instance
access is instance object and for class definition
access is class object. We are currently developing a
class hierarchy locking scheme with finer granularity.
That is, we are adopting attribute level granularity
instead of instance, and finer class definition instead
of entire class object, in order to provide better
concurrency among transactions.

References

[1] D. Agrawal and A. E. Abbadi, “A Non-restrictive
Concurrency Control for Object-Oriented Databases”,
3rd Int. Conf. on Extending Data Base Technology,
Vienna, Austria, Mar. 1992, pp 469 - 482.
[2] M. Cart and J. Ferrie, “Integrating Concurrency
Control into an Object-Oriented Database System”,
2nd Int. Conf. on Extending Data Base Technology,
Venice, Italy, Mar. 1990, pp. 363 - 377.
[3] C. J. Date, An Introduction to Database Systems,
Vol. II, Addison-Wesley, 1985
[4]. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger, “The notion of consistency and predicate
locks in a database system”, Communication of ACM,
Vol. 19, No. 11, Nov. 1976, pp. 624 - 633.
[5]. J. F. Garza and W. Kim, “Transaction Management
in an Object-Oriented Database System”, ACM
SIGMOD Int. Conf. on Management of Data, Chicago,
Illinois, Jun. 1988, pp. 37 - 45.
[6]. W. Jun and L. Gruenwald, “A Flexible Class
Hierarchy Locking Technique in Object-Oriented
Database System”, 11th Int. Conf. on Computers and
Their Applications, San Francisco, Mar. 1996, pp. 191
- 196.
[7]. H. F. Korth and A. Silberschartz, A. Database
System Concepts, 2nd Edition, McGraw Hill, 1991.
[8]. L. Lee and R. Liou, “A Multi-Granularity Locking
Model for Concurrency Control in Object-Oriented
Database Systems”, IEEE Trans. on Knowledge and
Data Engineering, Vol. 8, No. 1, Feb. 1996, pp. 144 -
156.
[9]. C. Malta and J. Martinez, “Controlling Concurrent
Accesses in an Object-Oriented Environment”, 2nd

 5

Int. Symp. on Database Systems for Advanced
Applications, Tokyo, Japan, Apr. 1991, pp. 192 - 200.
[10]. C. Malta and J. Martinez, “Automating Fine
Concurrency Control in Object-Oriented Databases”,
9th IEEE Conf. on Data Engineering, Vienna, Austria,
Apr. 1993, pp. 253- 260.
[11]. M. Ozsu and P. Valduriez, Principles of
Distributed Database Systems, Prentice Hall, 1991.

