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Abstract 

 
In this paper, we present a locking-based 
concurrency control scheme for object-oriented 
databases (OODBs). Our scheme deals with class 
hierarchy which is an important property in OODBs. 
Our scheme is based on so called special classes and 
can be used for any applications, with less overhead, 
by adjusting the number of special classes in a class 
hierarchy. For our scheme, we prove the correctness. 
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1. Introduction 
 
 An OODB is a collection of classes and 
instances of these classes. In an OODB, both classes 
and instances are referred to as objects. A class 
consists of a set of attributes and methods through 
which the class’ instances are accessed. Users can 
access objects by invoking methods. In order to make 
sure atomicity of user interactions, the traditional 
transaction model can be used in an OODB. That is, 
users can access an OODB by executing transactions, 
each of which is defined as a partially ordered set of 
method invocations on a class or an instance object 
[1]. In general, there are two types of access to an 
object: instance access (instance read and instance 
write) and class definition access (class definition 
read and class definition write) [2]. An instance 
access consists of consultations and/or modifications 
of attribute values in an instance or a set of instances. 
A class definition access consists of consultations of 
class definition and/or modifications of class 
definition such as adding/deleting an attribute or a 
method. 
 
 Concurrency control involves 
synchronization of access to the database, so that the 
consistency of the database is maintained [3, 4]. 
Although a concurrency control scheme allows 
shareable access among users, it incurs an overhead 
which may have a critical effect on OODBs, where 
many transaction are long-lived. Thus, it is necessary 
to reduce the overhead to improve transaction 

response time. Commutativity is a widely used 
criterion to determine whether a method can run 
concurrently with those in progress on the same 
object. Two methods commute if their execution 
orders do not affect the results of the methods. Two 
methods conflict each other if they do not commute. 
 One of the major properties of an OODB is 
inheritance. That is, a subclass inherits definitions 
(attributes and methods) defined on its superclass. 
Also, there is an is-a relationship between a subclass 
and its superclass. Thus, instance of a subclass is a 
specialization of the superclass (and conversely, 
instance of a superclass is a generalization of 
subclass). This inheritance relationship between 
classes forms a class hierarchy. There are two types 
of operations on a class hierarchy: class definition 
write and queries [5]. The class definition writes 
include adding/deleting an attribute or a method, 
changing domain of an attribute, adding/deleting a 
class, and so on. Thus, while a class and its instances 
are being accessed, the definitions of the class’ 
superclasses should not be modified. Also, due to the 
is-a relationship between classes, the search space 
for a query against a class, say C, may include the 
instances of the class hierarchy rooted at C as well as 
instances of C. 
 
 In this paper, we present a locking-based 
concurrency control scheme for class hierarchy in 
OODBs. In the literature, there are two approaches 
dealing with class hierarchy: explicit locking and 
implicit locking. Both approaches may work well for 
only specific applications in OODBs. Especially, in 
explicit locking, it may have less locking overhead 
only for transactions concerned with only non-query 
type  instance access (i.e., instance access performed 
for only one class) or class definition read. On the 
other hand, in implicit locking, it may have less 
locking overhead only for transactions concerned 
with query or class definition write. Our scheme is 
based on a so called special class, which will be 
defined in Section 3, and can be used for any 
applications, with less locking overhead, by adjusting 
the number of special classes. We show that our 
scheme works correctly. 



 This paper is organized as follows. In the 
next Section, we present previous studies and discuss 
their advantages and disadvantages. In Section 3, we 
discuss our class hierarchy locking scheme. The 
paper concludes with further work in Section 4.  
 
2. Related Work 
 
 As discussed in Section 1, due to 
inheritance, class definition write methods and 
queries on a class may need to access more than one 
class on a class hierarchy. There are two major 
existing approaches to perform locking on a class 
hierarchy: explicit locking [2, 6] and implicit locking 
[5,7]. In explicit locking, for a query involving a 
class, say C, and all of its subclasses, and for a class 
definition write on a class C, a lock is set not only on 
the class C, but also on each subclass of C on the 
class hierarchy. For other types of access, a lock is 
set for only the class to be accessed (we call target 
class). Thus, for a class definition write or query, this 
protocol reduces the number of locks required by 
transactions that access a class near the leaf level of a 
class lattice than transactions that access a class near 
the root of a class lattice. As another advantage of 
explicit locking, it can treat single inheritance where 
a class can inherit the class definition from one 
superclass, and multiple inheritance where a class 
can inherit the class definition from more than one 
superclass, in the same way. But, it increases the 
number of locks required by transactions that access 
a class at a higher level in the class lattice. Also, for 
class definition writes or queries, this protocol may 
need to search all subclasses of a class, say C, in 
order to decide if a lock on class C can be granted or 
not. 
 
 In implicit locking, setting a lock on a class 
C requires extra locking on a path from C to its root as 
well as on C. Intention locks [8, 9] are put on all the 
ancestors of a class before the target class is locked. 
An intention lock on a class indicates that some lock 
is held on a subclass of the class. Thus, for class 
definition writes or queries on a target class, a 
concurrency control protocol needs not search all 
subclasses of the target class for conflict checking. It 
only searches from the target class to a root of the 
target class. But, implicit locking requires a higher 
locking cost when a target class is near the leaf level 
in the class hierarchy. 
 For example, consider the following class 
hierarchy. In order to update the class definition in 
class, say C, each scheme works as follows. 

Implicit locking                 Explicit locking in O2 [2] 
in Orion  [5]                        
 
 IW lock  A 
   ↓ 
 IW lock   B 
   ↓ 
 W lock   C Cw lock   
   ↓ 
   D Cw lock 
   ↓ 
   E Cw lock 

 In implicit locking, intention locks IWs 
corresponding to W (Write) locks are required for all 
classes on the path from C to the root A. Thus, if 
another transaction needs to update the class 
definition in A, it does not have to search each class 
through the class hierarchy for conflict checking by 
the help of the intention lock IW on class A. On the 
other hand, explicit locking does not require any 
intention locks. But, it requires a Cw (Class Write) 
lock on each subclass (i.e., class D and E) of the 
target class through the class hierarchy since any 
modification of class definitions in C may affect the 
class definitions of its subclasses.  

 
3. Proposed class hierarchy locking  
 
3.1. Basic idea 

 As we have discussed, two existing class 
hierarchy locking schemes may work well for only 
specific OODB environments. Our work is to develop 
a new class hierarchy locking scheme which can be 
used for any OODB applications with less locking 
overhead. To achieve this, we designate some classes 
in the class hierarchy as special classes. A special 
class is a class on which class definition writes or 
queries are performed frequently. 

 In our scheme, intention locks are set on 
special classes only; thus, locking overhead is 
reduced compared to those in implicit locking. When 
a transaction needs to access a special class which is 
already intention locked, by invoking a class 
definition write or query on it, it is not necessary for a 
concurrency control to search the subclasses of the 
special class due to the help of the intention lock. On 
the other hand, if a class has little or no possibility to 
be accessed by a class definition write or query, there 
is no need to set an intention lock on that class since 
any access other than class definition writes or 
queries does not use the intention lock to check 



conflict. Thus, unlike implicit locking, we do not have 
to set an intention lock on every class on the path 
from a target class to a root. 

 In order to reduce locks required for a class 
definition write or query more than explicit locking, 
our scheme works as follows: for a non-query type 
instance access or class definition read, a lock is set 
on only the target class, like explicit locking. For class 
definition writes or queries, locks are set on every 
class from the target class to the first special class 
through the subclass chain of the target class (if there 
is no such special class, then set locks to leaf 
classes). Thus, as we have discussed, by choosing a 
special class as a class on which class definition 
writes or queries are performed frequently, we can 
reduce locking overhead. 
 Note that, the use of special classes in our 
class hierarchy locking scheme is flexible. For those 
applications in which there is no or few class 
definition writes or queries, special classes can be 
ignored. That is, we do not implement intention locks. 
So, in this case, our scheme behaves the same as 
explicit locking. For those applications in which class 
definition writes or queries are performed frequently, 
special classes are needed in order to have lower lock 
overhead than explicit locking and implicit locking. 
 For example, consider the following class 
hierarchy (Fig 1.a). Assume that a transaction T1 
invokes a class definition write or query method on 
class C7. Let LS1 be a lock setting for T1. Fig. 1.b, 1.c 
and 1.d show how explicit locking, implicit locking, 
and our scheme are done. SC denotes special class. 
 
C1 C1     C1:LS1   C1(SC): LS1  
↓ ↓      ↓  ↓ 
C2 C2     C2: LS1   C2 
↓ ↓      ↓  ↓ 
C3 C3     C3: LS1   C3  
↓ ↓      ↓  ↓  
C4 C4     C4: LS1   C4 (SC): 
LS1 
↓ ↓      ↓  ↓ 
C5 C5     C5: LS1   C5 
↓ ↓      ↓  ↓ 
C6 C6     C6: LS1   C6 
↓ ↓      ↓  ↓ 
C7 C7: LS1      C7: LS1   C7 (SC): 
LS1 
↓ ↓      ↓  ↓ 
C8 C8: LS1      C8  C8 
↓ ↓      ↓  ↓ 
C9 C9: LS1      C9  C9 
↓ ↓      ↓  ↓ 
C10 C10: LS1      C10  C101 
 
Fig. 1.a Fig 1.b     Fig 1. c  Fig. 1.d 

Class  Explicit      Implicit   Our 
scheme 
hierarchy    locking          locking    

  
3.2. Lock Modes 
 
 For the description of our class hierarchy 
locking, we have the following lock modes for class 
definition access and instance access. We adopt 
instance level granularity for instance access methods 
and entire class object for class definition access, like 
Orion [5] or O2 [2]. Thus, we can focus only on class 
hierarchy locking. For simplicity, we assume that a 
class has only one superclass (i.e., single inheritance). 
Below we show locks needed for different types of 
operations. For convenience, we use upper-case 
letters and lower-case letters to name locks a class 
and instance, respectively. 
 
•  Class definition write: CW (on target class) and 

INT-CW(intention lock on every class on the path 
from the target class to its root) 

• Class definition read: CR (on target class) and INT-
CR (intention lock on every class on the path from 
the target class to its root) 

•  Instance read: r(on target class) and T-R, INT-S-R, 
IMP-R, QR (on target class or its superclasses)   

• Instance write: w (on target instance) and T-W, INT-
S-W, IMP-W (on target class or its superclasses) 

 
< Instance read > 
• T-R lock means that some (not all) instances of a 

target class are r locked. An T-R lock is set on a 
target class whenever a r lock is set on its instance. 

• An intention lock INT-S-R is set on every class on 
the superclass chain from a target class to its root 
whenever any instance read lock is set on the target 
class or its instance. It indicates that some instance 
read lock is held on a subclass of the class. Thus, 
for class definition writes and queries, a 
concurrency control protocol needs not search all 
subclasses of the target class for conflict checking. 
It only searches from the target class to its root. 

• IMP-R lock (on target class) means that all instances 
are read locked implicitly (i.e., we reduce locking 
overhead by setting an IMP-R lock on the target 
class , not individual instances) 

• QR (Query Read on a target class) means that all 
instances of subclasses as well as instances of a 
target class are  read locked (i.e., we reduce locking 
overhead by setting an QR lock on only the target 
class, not setting IMP-R lock on the entire 
subclasses of the target class) 



 
< Instance write >  
• T-W lock (on target class) means that some (not all) 

instances of a target class are w locked. An T-W 
lock is set on a target class whenever w lock is set 
on its instance. 

• INT-S-W lock is set on every class on the 
superclass chain from the target class to its root 
whenever an instance write lock is set on instance 
or class. 

• IMP-W lock means that all instances of a target 
class are w locked implicitly (i.e., we reduce locking 
overhead by setting the lock on the target class, 
not individual instances) 

 
3.3. Commutativity Relation Table 
 
 We provide commutativity relation among 
lock modes introduced above. In tables 1 and 2, we 
give two commutativity relations, one for instances 
and the other for classes. O, X stand for commute, 
and not commute, respectively. 
 
a) instance 
 
                   lock holder 
   r w 
lock  r O X 
requester w  w  X X 
 
      Table 1. Commutativity relation for an instance 
 
b) Class 
      
    lock holder 
 lock            CW  INT  CR  INT  T-R INT  T-W INT  IMP  
IMP QR  
 requester            -CW          -CR         -S-R          -S-W  -R     -
W      
 
CW              X      X  X      X     X      X      X       X       X     
X      X 
INT-CW   X      O  O      O     O      O      O      O       O     O      

X 
CR   X      O      O      O     O      O      O      O       O     
O     O 
INT-CR   X      O      O      O     O      O      O      O       O     
O     O 
T-R   X      O      O      O     O      O      O      O       O     
X      O INT-S-R   X      O      O      O     O      O      O      
O       O     O     O 
T-W   X      O      O      O     O      O      O      O       X     
X      X 
INT-S-W   X      O      O      O     O      O      O      O       O     
O     X 

IMP-R   X      O      O      O     O      O      X      O        O    
X      O 
MP-W   X      O      O      O     X      O      X      O        X     
X     X 
QR   X      X      O      O     O      O      X      X        O     
X     O 
 
            Table 2. Commutativity table for a class 
 
3.4. Class Hierarchy locking algorithm 
 
 Our scheme is based on two-phase locking 
which requires each transaction to obtain a read (or 
write) lock on a data item before it reads (or writes) 
that data item, and not to obtain any more locks after 
it has released some lock [10]. For a given lock 
request on a class, say Y, we set locks on Y and all 
classes on the class hierarchy to which the class Y 
belongs as follows. 
Step 1) (applied to all types of lock request): For each 
special class (if any) through the superclass chain of 
Y, check conflicts and set an intention lock  if 
commute. If not commute, block the lock requester. 
Step 2) If the lock requesting method is neither CW 
(class definition write) nor QR (query), check conflicts 
and set one of T-R, T-W, IMP-R, IMP-W (depending 
on the lock request type) or CR (class definition read) 
on only the target class Y if commute and set an r or 
w lock on the instance to be accessed (we call target 
instance) if a method is invoked on the instance and 
commute. If not commute, block the requester. If the 
lock requesting method is CW or QR, then, from class 
Y to the first special class (or leaf class if there is no 
special class) through the subclass chain of Y, check 
conflicts and set CW or QR lock on each class if 
commute. We set a lock on the first special class so 
that we let other incoming transactions that access a 
subclass of Y check conflicts. Also, the reason we set 
a lock on each class (besides the first special class) 
through the subclass chain of Y is as follows: if a lock 
is set only on the first special class, say, C, then some 
conflict may not be detected (for example, a requester 
accesses a subclass of a lock holder’s class which is 
CW locked). If class Y has more than one subclass, 
then, for each direct subclass of Y, perform the same 
step 2). 
 
 As an example, consider the following lock 
requests by three transactions T1,  T2 and T3 on a 
class hierarchy in Fig. 2.a. 
 
a) T1: class definition write(CW) request on class C6 
b) T2: class definition read on class C5 
c) T3: instance read request on class C12 



 
Fig 2.b, 2.c, and 2.d show results of lock settings for 
T1, T2 and T3 by our scheme, explicit locking, and 
implicit locking, respectively. Let LS i be a lock LS set 
by transaction Ti. Assume that class C1, C4, C7 and 
C11 are special classes. In our scheme, as we can see, 
the lock request by T3 is denied because of a conflict 
on class C7. Likewise, in explicit locking and implicit 
locking, the lock request is denied because of a 
conflict on class C12 and C6, respectively. 
 
    
               C1                 C1(SC): INT-CW1; INT-CR2 

                ↓                               ↓    
               C2                             C2    
                ↓                               ↓  
  
               C3            C3    
                ↓                               ↓  
  
              C 3                            C4(SC): INT-CW1; INT-CR2 
               ↓                               ↓  
   
              C5                             C5: CR2    
               ↓                               ↓  
  
C51        C6                  C51    C6:CW1   
↓            ↓                     ↓        ↓   
C52       C7                  C52     C7(SC):CW1   
              ↓                          ↓  
             C8                             C8  
  
              ↓            ↓   
             C9                             C9   
  
              ↓           ↓   
  
C91      C10  C92          C91   C10     C92  
              ↓           ↓   
  
            C11                           C11 (SC)   
              ↓                              ↓   
  
            C12                           C12    
              ↓                              ↓    
            C13    C121                    C13     C121   

        Fig 2.a      Fig. 2.b           
Class hierarchy        Our scheme 
    
 
                    C1                            C1: INT-CW1; INT-
CR2 
                    ↓          ↓ 
                    C2                            C2: INT-CW1; INT-
CR2 
                    ↓          ↓ 
                    C3                           C3: INT-CW1: INT-CR2 
                    ↓          ↓ 
                   C4                           C4: INT-CW1, INT-CR2 
                    ↓         ↓ 

                  C5:CR2                                C5: INT-CW1; CR2 
                   ↓         ↓ 
C51:           C6: CW1                    C51   C6: CW1 
 ↓                ↓                 ↓       ↓ 
C52:           C7: CW                                 C52    C7 
                    ↓                          ↓ 
                  C8: CW1                             C8 
                    ↓        ↓ 
                 C9: CW1                              C9 
                   ↓        ↓ 
C91:CW1 C10:CW1 C92:CW1  C91     C10     C92 
 ↓        ↓   
 C11: CW1        C11 
 ↓       ↓ 
 C12: CW1       C12 
 ↓       ↓ 
              C13:CW 1 C121:CW 1    C13 C121 
 
           Fig. 2.c               Fig. 2.d 
    Explicit locking          Implicit locking 

 As we can see in Fig. 2, there are 7 lock sets 
for our scheme, 12 lock sets for explicit locking, and 11 
lock sets  for implicit locking. Our scheme incurs less 
locking overhead for queries or class definition writes 
with the help of special classes. 

 

3.5. Correctness of our proposed class  
       hierarchy locking algorithm 
 

 Now, we prove that our algorithm is correct, 
that is, it satisfies serializability [3]. We prove it by 
showing that, for any lock requester, it is guaranteed 
that the conflict with a lock holder (if any) is always 
detected. With this proof, since our class hierarchy 
locking scheme is based on two-phase locking, it is 
guaranteed that our scheme satisfies serializability 
[3,10]. If a lock requester is either a class definition 
read or an instance access performed on one class, 
then its lock holders consist of transactions/methods 
holding locks on the target class and all special class 
in the superclass chain of the target class. If a lock 
requester is a class definition write or query, then its 
lock holders include those defined above plus 
transactions/methods holding locks on each class 
from the target class to the first special class in the 
subclass chain of the target class. 

 There are four cases depending on the types 
of lock requesters and holders. 
case i) the lock holder is a class definition read or 
an instance access on only one class 
the lock requester is a class definition read or an 
instance access on only one class 



 If a lock holder and a lock requester access 
different classes, there is no conflict. If a lock holder 
and a lock requester access the same class, there is no 
conflict on all special classes through the superclass 
chain of the target class because intention locks on 
special classes are compatible with the lock requester; 
conflicts can be detected on the target class (for 
example, IMP-W (requester) and T-R (holder)) or 
target instance (for example, T-R and T-W) 
case ii) the lock holder is a class definition read or 
an instance access on only one class 
the lock requester is a class definition write or query 
 If the lock holder is holding a lock on a 
superclass of the lock requester’s class, there is no 
conflict since the lock requester does not access the 
holder’s class. If not, a conflict is checked either on 
the nearest special class through the subclass chain 
of the lock requester’s class if there is a special class 
between the holder’s class and the requester’s class 
(case 1) or on the lock holder’s class, otherwise (case 
2). For case 1, there are two subcases as follows: 
 
a) the lock holder is a special class(Fig. 3.a): 
b) the lock holder is not a special class (Fig. 3.b) 

 
• (R)       • (R)         • (R)          • (SC1) 
• SC1           • SC1        •            • 
•       •         •            • 
•       •         •            • 
•        •         • (H)          • 
• SC2       • SC2        • SC1        • (SC2) 
•       •         •            • 
•       •          •            • (R) 
• SC3(H)      • SC3        • SC2         • 
•       • (H)         •            • (H)  

Fig 3. a     Fig. 3.b      Fig. 3.c     Fig. 3.d 
Subcase a  Subcase b  Subcase a  Subcase b  
of case 1    of case 1    of case 2     of case 2 
 
 Let R and H be two classes on which the 
lock requester requests a lock and the lock holder 
holds a lock, respectively. In either case, a conflict (if 
any) is checked on SC1, which is the nearest special 
class of the lock requester’s class through its 
subclass chain, since the holder has an intention lock 
on SC1 and the requester requests CW or QR on SC1. 
On the other hand, in case 2, for subcase a, a conflict 
(if any) is checked on H as in Fig. 3.c since the holder 
does not have any intention locks through the 
superclass chain of R and the requester needs to set a 
CW or QR lock on H. For subcase b, conflict (if any) 
is checked on H as in Fig 3.d since intention locks on 
all special classes through the superclass chain of H 

are compatible and the requester needs to set a CW or 
QR lock on H. 
 
 For other cases (case iii: the lock holder is a 
class definition write or query; the lock requester is a 
class read or instance access on only one class and 
case iv: the lock holder is a class definition write or 
query; the lock requester is a class definition write or 
query), we can prove similarly as in case ii). Thus, we 
can conclude that, for any lock requester, it is 
guaranteed that its conflict with a lock holder (if any) 
is always detected. Also, since our scheme is based 
on two-phase locking, serializability is  guaranteed 
[10]. 
 
4. Further work 
 
            In this paper, we present a concurrency control 
scheme for class hierarchy in OODBs. Our scheme is 
based on special classes to reduce locking overhead. 
Our scheme can be used in any application in OODBs 
by adjusting the number of special classes. 
 
 In our work, locking granularity is instance 
object and class object for instance access and class 
definition access, respectively. We are currently 
developing a class hierarchy locking scheme with 
finer granularity. That is, we are adopting attribute 
level granularity instead of instance, and individual 
class definition instead of entire class object,  in order 
to provide better concurrency among transactions. 
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