
A Flexible Class Hierarchy Locking Technique in Object-Oriented Database Systems

Woochun Jun and Le Gruenwald
Dept. of Computer Science

University of Oklahoma
Norman, OK 73019

Abstract

In this paper, we present a locking-based
concurrency control scheme for object-oriented
databases (OODBs). Our scheme deals with class
hierarchy which is an important property in OODBs.
Our scheme is based on so called special classes and
can be used for any applications, with less overhead,
by adjusting the number of special classes in a class
hierarchy. For our scheme, we prove the correctness.
Key word: concurrency control, OODB

1. Introduction

 An OODB is a collection of classes and
instances of these classes. In an OODB, both classes
and instances are referred to as objects. A class
consists of a set of attributes and methods through
which the class’ instances are accessed. Users can
access objects by invoking methods. In order to make
sure atomicity of user interactions, the traditional
transaction model can be used in an OODB. That is,
users can access an OODB by executing transactions,
each of which is defined as a partially ordered set of
method invocations on a class or an instance object
[1]. In general, there are two types of access to an
object: instance access (instance read and instance
write) and class definition access (class definition
read and class definition write) [2]. An instance
access consists of consultations and/or modifications
of attribute values in an instance or a set of instances.
A class definition access consists of consultations of
class definition and/or modifications of class
definition such as adding/deleting an attribute or a
method.

 Concurrency control involves
synchronization of access to the database, so that the
consistency of the database is maintained [3, 4].
Although a concurrency control scheme allows
shareable access among users, it incurs an overhead
which may have a critical effect on OODBs, where
many transaction are long-lived. Thus, it is necessary
to reduce the overhead to improve transaction

response time. Commutativity is a widely used
criterion to determine whether a method can run
concurrently with those in progress on the same
object. Two methods commute if their execution
orders do not affect the results of the methods. Two
methods conflict each other if they do not commute.
 One of the major properties of an OODB is
inheritance. That is, a subclass inherits definitions
(attributes and methods) defined on its superclass.
Also, there is an is-a relationship between a subclass
and its superclass. Thus, instance of a subclass is a
specialization of the superclass (and conversely,
instance of a superclass is a generalization of
subclass). This inheritance relationship between
classes forms a class hierarchy. There are two types
of operations on a class hierarchy: class definition
write and queries [5]. The class definition writes
include adding/deleting an attribute or a method,
changing domain of an attribute, adding/deleting a
class, and so on. Thus, while a class and its instances
are being accessed, the definitions of the class’
superclasses should not be modified. Also, due to the
is-a relationship between classes, the search space
for a query against a class, say C, may include the
instances of the class hierarchy rooted at C as well as
instances of C.

 In this paper, we present a locking-based
concurrency control scheme for class hierarchy in
OODBs. In the literature, there are two approaches
dealing with class hierarchy: explicit locking and
implicit locking. Both approaches may work well for
only specific applications in OODBs. Especially, in
explicit locking, it may have less locking overhead
only for transactions concerned with only non-query
type instance access (i.e., instance access performed
for only one class) or class definition read. On the
other hand, in implicit locking, it may have less
locking overhead only for transactions concerned
with query or class definition write. Our scheme is
based on a so called special class, which will be
defined in Section 3, and can be used for any
applications, with less locking overhead, by adjusting
the number of special classes. We show that our
scheme works correctly.

 This paper is organized as follows. In the
next Section, we present previous studies and discuss
their advantages and disadvantages. In Section 3, we
discuss our class hierarchy locking scheme. The
paper concludes with further work in Section 4.

2. Related Work

 As discussed in Section 1, due to
inheritance, class definition write methods and
queries on a class may need to access more than one
class on a class hierarchy. There are two major
existing approaches to perform locking on a class
hierarchy: explicit locking [2, 6] and implicit locking
[5,7]. In explicit locking, for a query involving a
class, say C, and all of its subclasses, and for a class
definition write on a class C, a lock is set not only on
the class C, but also on each subclass of C on the
class hierarchy. For other types of access, a lock is
set for only the class to be accessed (we call target
class). Thus, for a class definition write or query, this
protocol reduces the number of locks required by
transactions that access a class near the leaf level of a
class lattice than transactions that access a class near
the root of a class lattice. As another advantage of
explicit locking, it can treat single inheritance where
a class can inherit the class definition from one
superclass, and multiple inheritance where a class
can inherit the class definition from more than one
superclass, in the same way. But, it increases the
number of locks required by transactions that access
a class at a higher level in the class lattice. Also, for
class definition writes or queries, this protocol may
need to search all subclasses of a class, say C, in
order to decide if a lock on class C can be granted or
not.

 In implicit locking, setting a lock on a class
C requires extra locking on a path from C to its root as
well as on C. Intention locks [8, 9] are put on all the
ancestors of a class before the target class is locked.
An intention lock on a class indicates that some lock
is held on a subclass of the class. Thus, for class
definition writes or queries on a target class, a
concurrency control protocol needs not search all
subclasses of the target class for conflict checking. It
only searches from the target class to a root of the
target class. But, implicit locking requires a higher
locking cost when a target class is near the leaf level
in the class hierarchy.
 For example, consider the following class
hierarchy. In order to update the class definition in
class, say C, each scheme works as follows.

Implicit locking Explicit locking in O2 [2]
in Orion [5]

 IW lock A
 ↓
 IW lock B
 ↓
 W lock C Cw lock
 ↓
 D Cw lock
 ↓
 E Cw lock

 In implicit locking, intention locks IWs
corresponding to W (Write) locks are required for all
classes on the path from C to the root A. Thus, if
another transaction needs to update the class
definition in A, it does not have to search each class
through the class hierarchy for conflict checking by
the help of the intention lock IW on class A. On the
other hand, explicit locking does not require any
intention locks. But, it requires a Cw (Class Write)
lock on each subclass (i.e., class D and E) of the
target class through the class hierarchy since any
modification of class definitions in C may affect the
class definitions of its subclasses.

3. Proposed class hierarchy locking

3.1. Basic idea

 As we have discussed, two existing class
hierarchy locking schemes may work well for only
specific OODB environments. Our work is to develop
a new class hierarchy locking scheme which can be
used for any OODB applications with less locking
overhead. To achieve this, we designate some classes
in the class hierarchy as special classes. A special
class is a class on which class definition writes or
queries are performed frequently.

 In our scheme, intention locks are set on
special classes only; thus, locking overhead is
reduced compared to those in implicit locking. When
a transaction needs to access a special class which is
already intention locked, by invoking a class
definition write or query on it, it is not necessary for a
concurrency control to search the subclasses of the
special class due to the help of the intention lock. On
the other hand, if a class has little or no possibility to
be accessed by a class definition write or query, there
is no need to set an intention lock on that class since
any access other than class definition writes or
queries does not use the intention lock to check

conflict. Thus, unlike implicit locking, we do not have
to set an intention lock on every class on the path
from a target class to a root.

 In order to reduce locks required for a class
definition write or query more than explicit locking,
our scheme works as follows: for a non-query type
instance access or class definition read, a lock is set
on only the target class, like explicit locking. For class
definition writes or queries, locks are set on every
class from the target class to the first special class
through the subclass chain of the target class (if there
is no such special class, then set locks to leaf
classes). Thus, as we have discussed, by choosing a
special class as a class on which class definition
writes or queries are performed frequently, we can
reduce locking overhead.
 Note that, the use of special classes in our
class hierarchy locking scheme is flexible. For those
applications in which there is no or few class
definition writes or queries, special classes can be
ignored. That is, we do not implement intention locks.
So, in this case, our scheme behaves the same as
explicit locking. For those applications in which class
definition writes or queries are performed frequently,
special classes are needed in order to have lower lock
overhead than explicit locking and implicit locking.
 For example, consider the following class
hierarchy (Fig 1.a). Assume that a transaction T1
invokes a class definition write or query method on
class C7. Let LS1 be a lock setting for T1. Fig. 1.b, 1.c
and 1.d show how explicit locking, implicit locking,
and our scheme are done. SC denotes special class.

C1 C1 C1:LS1 C1(SC): LS1
↓ ↓ ↓ ↓
C2 C2 C2: LS1 C2
↓ ↓ ↓ ↓
C3 C3 C3: LS1 C3
↓ ↓ ↓ ↓
C4 C4 C4: LS1 C4 (SC):
LS1
↓ ↓ ↓ ↓
C5 C5 C5: LS1 C5
↓ ↓ ↓ ↓
C6 C6 C6: LS1 C6
↓ ↓ ↓ ↓
C7 C7: LS1 C7: LS1 C7 (SC):
LS1
↓ ↓ ↓ ↓
C8 C8: LS1 C8 C8
↓ ↓ ↓ ↓
C9 C9: LS1 C9 C9
↓ ↓ ↓ ↓
C10 C10: LS1 C10 C101

Fig. 1.a Fig 1.b Fig 1. c Fig. 1.d

Class Explicit Implicit Our
scheme
hierarchy locking locking

3.2. Lock Modes

 For the description of our class hierarchy
locking, we have the following lock modes for class
definition access and instance access. We adopt
instance level granularity for instance access methods
and entire class object for class definition access, like
Orion [5] or O2 [2]. Thus, we can focus only on class
hierarchy locking. For simplicity, we assume that a
class has only one superclass (i.e., single inheritance).
Below we show locks needed for different types of
operations. For convenience, we use upper-case
letters and lower-case letters to name locks a class
and instance, respectively.

• Class definition write: CW (on target class) and

INT-CW(intention lock on every class on the path
from the target class to its root)

• Class definition read: CR (on target class) and INT-
CR (intention lock on every class on the path from
the target class to its root)

• Instance read: r(on target class) and T-R, INT-S-R,
IMP-R, QR (on target class or its superclasses)

• Instance write: w (on target instance) and T-W, INT-
S-W, IMP-W (on target class or its superclasses)

< Instance read >
• T-R lock means that some (not all) instances of a

target class are r locked. An T-R lock is set on a
target class whenever a r lock is set on its instance.

• An intention lock INT-S-R is set on every class on
the superclass chain from a target class to its root
whenever any instance read lock is set on the target
class or its instance. It indicates that some instance
read lock is held on a subclass of the class. Thus,
for class definition writes and queries, a
concurrency control protocol needs not search all
subclasses of the target class for conflict checking.
It only searches from the target class to its root.

• IMP-R lock (on target class) means that all instances
are read locked implicitly (i.e., we reduce locking
overhead by setting an IMP-R lock on the target
class , not individual instances)

• QR (Query Read on a target class) means that all
instances of subclasses as well as instances of a
target class are read locked (i.e., we reduce locking
overhead by setting an QR lock on only the target
class, not setting IMP-R lock on the entire
subclasses of the target class)

< Instance write >
• T-W lock (on target class) means that some (not all)

instances of a target class are w locked. An T-W
lock is set on a target class whenever w lock is set
on its instance.

• INT-S-W lock is set on every class on the
superclass chain from the target class to its root
whenever an instance write lock is set on instance
or class.

• IMP-W lock means that all instances of a target
class are w locked implicitly (i.e., we reduce locking
overhead by setting the lock on the target class,
not individual instances)

3.3. Commutativity Relation Table

 We provide commutativity relation among
lock modes introduced above. In tables 1 and 2, we
give two commutativity relations, one for instances
and the other for classes. O, X stand for commute,
and not commute, respectively.

a) instance

 lock holder
 r w
lock r O X
requester w w X X

 Table 1. Commutativity relation for an instance

b) Class

 lock holder
 lock CW INT CR INT T-R INT T-W INT IMP
IMP QR
 requester -CW -CR -S-R -S-W -R -
W

CW X X X X X X X X X
X X
INT-CW X O O O O O O O O O

X
CR X O O O O O O O O
O O
INT-CR X O O O O O O O O
O O
T-R X O O O O O O O O
X O INT-S-R X O O O O O O
O O O O
T-W X O O O O O O O X
X X
INT-S-W X O O O O O O O O
O X

IMP-R X O O O O O X O O
X O
MP-W X O O O X O X O X
X X
QR X X O O O O X X O
X O

 Table 2. Commutativity table for a class

3.4. Class Hierarchy locking algorithm

 Our scheme is based on two-phase locking
which requires each transaction to obtain a read (or
write) lock on a data item before it reads (or writes)
that data item, and not to obtain any more locks after
it has released some lock [10]. For a given lock
request on a class, say Y, we set locks on Y and all
classes on the class hierarchy to which the class Y
belongs as follows.
Step 1) (applied to all types of lock request): For each
special class (if any) through the superclass chain of
Y, check conflicts and set an intention lock if
commute. If not commute, block the lock requester.
Step 2) If the lock requesting method is neither CW
(class definition write) nor QR (query), check conflicts
and set one of T-R, T-W, IMP-R, IMP-W (depending
on the lock request type) or CR (class definition read)
on only the target class Y if commute and set an r or
w lock on the instance to be accessed (we call target
instance) if a method is invoked on the instance and
commute. If not commute, block the requester. If the
lock requesting method is CW or QR, then, from class
Y to the first special class (or leaf class if there is no
special class) through the subclass chain of Y, check
conflicts and set CW or QR lock on each class if
commute. We set a lock on the first special class so
that we let other incoming transactions that access a
subclass of Y check conflicts. Also, the reason we set
a lock on each class (besides the first special class)
through the subclass chain of Y is as follows: if a lock
is set only on the first special class, say, C, then some
conflict may not be detected (for example, a requester
accesses a subclass of a lock holder’s class which is
CW locked). If class Y has more than one subclass,
then, for each direct subclass of Y, perform the same
step 2).

 As an example, consider the following lock
requests by three transactions T1, T2 and T3 on a
class hierarchy in Fig. 2.a.

a) T1: class definition write(CW) request on class C6
b) T2: class definition read on class C5
c) T3: instance read request on class C12

Fig 2.b, 2.c, and 2.d show results of lock settings for
T1, T2 and T3 by our scheme, explicit locking, and
implicit locking, respectively. Let LS i be a lock LS set
by transaction Ti. Assume that class C1, C4, C7 and
C11 are special classes. In our scheme, as we can see,
the lock request by T3 is denied because of a conflict
on class C7. Likewise, in explicit locking and implicit
locking, the lock request is denied because of a
conflict on class C12 and C6, respectively.

 C1 C1(SC): INT-CW1; INT-CR2

 ↓ ↓
 C2 C2
 ↓ ↓

 C3 C3
 ↓ ↓

 C 3 C4(SC): INT-CW1; INT-CR2
 ↓ ↓

 C5 C5: CR2
 ↓ ↓

C51 C6 C51 C6:CW1
↓ ↓ ↓ ↓
C52 C7 C52 C7(SC):CW1
 ↓ ↓
 C8 C8

 ↓ ↓
 C9 C9

 ↓ ↓

C91 C10 C92 C91 C10 C92
 ↓ ↓

 C11 C11 (SC)
 ↓ ↓

 C12 C12
 ↓ ↓
 C13 C121 C13 C121

 Fig 2.a Fig. 2.b
Class hierarchy Our scheme

 C1 C1: INT-CW1; INT-
CR2
 ↓ ↓
 C2 C2: INT-CW1; INT-
CR2
 ↓ ↓
 C3 C3: INT-CW1: INT-CR2
 ↓ ↓
 C4 C4: INT-CW1, INT-CR2
 ↓ ↓

 C5:CR2 C5: INT-CW1; CR2
 ↓ ↓
C51: C6: CW1 C51 C6: CW1
 ↓ ↓ ↓ ↓
C52: C7: CW C52 C7
 ↓ ↓
 C8: CW1 C8
 ↓ ↓
 C9: CW1 C9
 ↓ ↓
C91:CW1 C10:CW1 C92:CW1 C91 C10 C92
 ↓ ↓
 C11: CW1 C11
 ↓ ↓
 C12: CW1 C12
 ↓ ↓
 C13:CW 1 C121:CW 1 C13 C121

 Fig. 2.c Fig. 2.d
 Explicit locking Implicit locking

 As we can see in Fig. 2, there are 7 lock sets
for our scheme, 12 lock sets for explicit locking, and 11
lock sets for implicit locking. Our scheme incurs less
locking overhead for queries or class definition writes
with the help of special classes.

3.5. Correctness of our proposed class
 hierarchy locking algorithm

 Now, we prove that our algorithm is correct,
that is, it satisfies serializability [3]. We prove it by
showing that, for any lock requester, it is guaranteed
that the conflict with a lock holder (if any) is always
detected. With this proof, since our class hierarchy
locking scheme is based on two-phase locking, it is
guaranteed that our scheme satisfies serializability
[3,10]. If a lock requester is either a class definition
read or an instance access performed on one class,
then its lock holders consist of transactions/methods
holding locks on the target class and all special class
in the superclass chain of the target class. If a lock
requester is a class definition write or query, then its
lock holders include those defined above plus
transactions/methods holding locks on each class
from the target class to the first special class in the
subclass chain of the target class.

 There are four cases depending on the types
of lock requesters and holders.
case i) the lock holder is a class definition read or
an instance access on only one class
the lock requester is a class definition read or an
instance access on only one class

 If a lock holder and a lock requester access
different classes, there is no conflict. If a lock holder
and a lock requester access the same class, there is no
conflict on all special classes through the superclass
chain of the target class because intention locks on
special classes are compatible with the lock requester;
conflicts can be detected on the target class (for
example, IMP-W (requester) and T-R (holder)) or
target instance (for example, T-R and T-W)
case ii) the lock holder is a class definition read or
an instance access on only one class
the lock requester is a class definition write or query
 If the lock holder is holding a lock on a
superclass of the lock requester’s class, there is no
conflict since the lock requester does not access the
holder’s class. If not, a conflict is checked either on
the nearest special class through the subclass chain
of the lock requester’s class if there is a special class
between the holder’s class and the requester’s class
(case 1) or on the lock holder’s class, otherwise (case
2). For case 1, there are two subcases as follows:

a) the lock holder is a special class(Fig. 3.a):
b) the lock holder is not a special class (Fig. 3.b)

• (R) • (R) • (R) • (SC1)
• SC1 • SC1 • •
• • • •
• • • •
• • • (H) •
• SC2 • SC2 • SC1 • (SC2)
• • • •
• • • • (R)
• SC3(H) • SC3 • SC2 •
• • (H) • • (H)

Fig 3. a Fig. 3.b Fig. 3.c Fig. 3.d
Subcase a Subcase b Subcase a Subcase b
of case 1 of case 1 of case 2 of case 2

 Let R and H be two classes on which the
lock requester requests a lock and the lock holder
holds a lock, respectively. In either case, a conflict (if
any) is checked on SC1, which is the nearest special
class of the lock requester’s class through its
subclass chain, since the holder has an intention lock
on SC1 and the requester requests CW or QR on SC1.
On the other hand, in case 2, for subcase a, a conflict
(if any) is checked on H as in Fig. 3.c since the holder
does not have any intention locks through the
superclass chain of R and the requester needs to set a
CW or QR lock on H. For subcase b, conflict (if any)
is checked on H as in Fig 3.d since intention locks on
all special classes through the superclass chain of H

are compatible and the requester needs to set a CW or
QR lock on H.

 For other cases (case iii: the lock holder is a
class definition write or query; the lock requester is a
class read or instance access on only one class and
case iv: the lock holder is a class definition write or
query; the lock requester is a class definition write or
query), we can prove similarly as in case ii). Thus, we
can conclude that, for any lock requester, it is
guaranteed that its conflict with a lock holder (if any)
is always detected. Also, since our scheme is based
on two-phase locking, serializability is guaranteed
[10].

4. Further work

 In this paper, we present a concurrency control
scheme for class hierarchy in OODBs. Our scheme is
based on special classes to reduce locking overhead.
Our scheme can be used in any application in OODBs
by adjusting the number of special classes.

 In our work, locking granularity is instance
object and class object for instance access and class
definition access, respectively. We are currently
developing a class hierarchy locking scheme with
finer granularity. That is, we are adopting attribute
level granularity instead of instance, and individual
class definition instead of entire class object, in order
to provide better concurrency among transactions.

References

[1] D. Agrawal and A. E. Abbadi, “A Non-restrictive
Concurrency Control for Object-Oriented Databases”,
3rd Int. Conf. on Extending Data Base Technology,
Vienna, Austria, p. 469 - 482, Mar. 1992.
[2] M. Cart and J. Ferrie, “Integrating Concurrency
Control into an Object-Oriented Database System”,
2nd Int. Conf. on Extending Data Base Technology,
Venice, Italy, pp. 363 - 377, Mar. 1990
[3] P.A. Bernstein, V. Hadzilacos and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.
[4] M. T. Ozsu and Patrick Valduriez, Principles of
Distributed Database Systems, Prentice Hall, 1991.
[5] J. F. Garza and W. Kim, “Transaction Management
in an Object-Oriented Database System”, ACM
SIGMOD Int. Conf. on Management of Data, Chicago,
Illinois, pp. 37 - 45, Jun. 1988.

[6] Carmelo Malta and Jose Martinez, “Automating
Fine Concurrency Control in Object-Oriented
Databases”, 9th IEEE Conf. on Data Engineering,
Vienna, Austria, pp. 253- 260, Apr. 1993.
[7] H. V. Jagadish and Daniel F. Lieuwen, “Multi-
Granularity Locks in an Object-Oriented Database”,
AT&T technical report, 1993.
[8] C. J. Date, An Introduction to Database Systems,
Vol. II, Addison-Wesley, 1985.
[9] Henry F. Korth and Abraham Silberschartz,
Database System Concepts, 2nd Edition, McGraw Hill,
1991.
[10] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger, “The notion of consistency and predicate
locks in a database system”, Communication of ACM,
Vol 19, No. 11, pp. 624 - 633, Nov. 1976.

