
 

An integrated concurrency control in object-oriented databases 

Woochun Jun and Le Gruenwald 

School of Computer science 
University of Oklahoma 

Norman, OK 73019 
E-mail : Gruenwal@mailhost.ecn.uoknor.edu 

 

Abstract 

In this paper, we present a concurrency control scheme to increase concurrency among methods in Object-Oriented 
Databases. We are concerned with all types of access to an object : instance access and class definition access. For 
instance access, our work has the following characteristics. First, construction of commutativity relation among 
methods can be automated. Second, it provides more concurrency than read and write access modes on methods. 
Third, deadlocks due to lock escalation can be reduced. Finally, concurrency is increased further with the use of run-
time information. For class definition access, we allow class definition access methods to run concurrently by taking 
fine granularity. We also allow more parallelism between class definition access methods and instance access 
methods. 

 

 

1. Introduction 

 In object-oriented database systems (OODBS), a 
database is a collection of classes and instances where 
classes and instances are called objects. Users can access 
objects by invoking methods in OODBS. To make sure 
atomicity of user interactions, the traditional transaction 
model can be used in OODBS. That is, users can access 
OODB by executing transactions, each of which is defined 
as a partially ordered set of method invocations on class or 
instance objects (Agrawal, 1992).  

 Concurrency control involves synchronization of multiple 
access to the database, so that the consistency of the 
database is maintained (Bernstein, 1987). Like in 
conventional databases, concurrency control in OODBS also 
requires logical consistency of data and transactions. 
Concurrency control requires an application-dependent 
correctness criterion to maintain database consistency while 
transactions are running concurrently on the same object. 
Serializability is a widely used correctness criterion. 
Transactions are serializable if the interleaved execution of 
their operations produces the same output and has the same 
effects on the database as some serial execution of the same 
transactions (Bern81, Bern87). 

 In OODBS, one of main concerns is to increase 
concurrency among methods so that more transactions can 

run in parallel. Usually, transactions are long in typical 
OODB applications. Thus, aborting a long transaction due to 
conflicts wastes system resources. Also, holding resources 
by a long transaction may delay other transactions. 
Commutativity is a widely used criterion to determine 
whether a method can run concurrently with those in 
progress on the same object. Two methods commute if their 
execution orders do not affect the results of the methods. 
Two methods conflict each other if they do not commute. 

 In general, there are two types of access to an OODB : 
instance access (instance read, instance write) and class 
definition access (class definition read, class definition 
update) (Cart, 1990). An instance access consists of 
consultations and modifications of attribute values in an 
instance or a set of instances. A class definition access 
consists of consulting class definition, adding/deleting an 
attribute or a method, changing the implementation code of a 
method or changing the inheritance relationships between 
classes, etc. 

 In this paper, we present a locking-based concurrency 
control scheme to increase concurrency among methods. For 
instance access methods, our scheme has several important 
characteristics. First, it does not put the burden of 
determining commutativity for methods on application 
programmers. Second, it provides more concurrency than 
read and write access modes on methods. Third, we reduce 
deadlocks due to lock escalation, which is a main source of 



deadlocks (Malta, 1993). Finally, it takes run-time information 
into consideration to improve concurrency. For class 
definition access methods, we allow them to run 
concurrently by taking fine locking granularity. Also, we 
allow more parallelism between class definition access 
methods and instance access methods. 

 The paper is organized as follows. In the next section, we 
review related studies and discuss their advantages and 
disadvantages. In section 3, we propose a scheme to increase 
concurrency among methods. The paper concludes with 
further work in section 4. 

 

2. Previous Work 

2.1. Concurrency in instance access  

 Several techniques have been proposed to increase 
concurrency among instance access methods (Agrawal, 
1992; Badrinath, 1988; Badrinath, 1992; Chrysanthis, 1991). 
In order to decide commutativity of instance access 
methods, they require application programmers to perform 
semantic analysis on the methods. In (Agrawal, 1992), they 
use right backward commutativity to provide more 
concurrency among methods. But, in order to support right 
backward commutativity, application programmers need to 
know all possible outcomes of each method and recovery 
should be based on update-in-place policy. In (Badrinath, 
1988), the affected set of each method is adopted to give fine 
concurrency. In their work, two methods commute if the 
intersection of their affected set is disjoint. But, application 
programmers need to know the affected set of each method. 
The recoverability is used to provide enhanced concurrency 
in (Badrinath, 1992). An operation o1 is recoverable relative 
to another operation o2, if o2 returns the same value whether 
or not o1 is executed immediately before o2. This work 
requires application programmers to know all outcomes of 
each method for possible input parameters. A formal scheme 
to extract concurrency from method is presented in 
(Chrysanthis, 1988). To support this work, application 
programmers need to know effects of each method. Also, 
dependency relation between each pair of method should be 
provided by application programmers. 

 Recently in (Malta, 1993), the process of constructing 
commutativity relation from method contents is automated. It 
is based on the notion of affected sets of attributes 
(Badrinath, 1988). That is, even if two methods conflict in 
terms of read or write operations, as long as their access 
modes on individual attributes do not conflict, two methods 
can run in parallel. Commutativity of methods is determined 
at compile-time so that run-time commutativity checking is 
avoided. As a preliminary step to construct commutativity 
relation among methods, they construct an Direct Access 
Vector(DAV) for each method. An DAV is a vector whose 
field corresponds to each attribute defined in the class on 
which the method operates. Each value composing this 

vector denotes the most restrictive access mode used by the 
method when accessing the corresponding field. An access 
mode of an attribute can have one of three values, N (Null), 
R (Read) and W (Write) with N < R < W for their 
restrictiveness. Access mode information is syntactically 
extracted from the source code of the method at compile-
time. After the construction of DAVs of methods, 
commutativity of methods can be constructed as follows : 
two methods commute if their corresponding DAVs 
commute. In turn, two DAVs commute if their access modes 
are compatible for each attribute. This commutativity relation 
is defined in the form of a table.  

 The above technique takes access mode information 
solely from the source code of a method and thus frees the 
user from determining commutativity relations. Also, this 
approach can provide finer concurrency than mere read and 
write conflicts by examining attribute level. Since a DAV of a 
method is the union of its own DAV and DAVs of all other 
methods defined in that method, deadlocks due to lock 
escalation can be reduced by declaring the most exclusive 
access mode in a method. However, concurrency 
improvement offered by this technique is limited since run-
time information on attributes is not taken into account. 

 

2.2. Concurrency between class definition access 

 In existing OODB systems such as Orion, O2 and 
Gemstone (Cart, 1990; Kim, 1990; Servio, 1990), a class 
definition update (also called schema update or class write) 
requires a lock on an entire class object. Thus, no matter 
what kind of update operation is performed on a class object, 
it blocks all other class definition access operations even if 
they need to access disjoint portions of the class object. 

 Recently, in (Agrawal, 1992), they provide more 
concurrency for class definition updates by providing finer 
locking granularity. But, class definition updates in their 
work are limited to updates on attributes and methods. For 
definition update on method, they classify it into three 
categories: 1) add a method to a class 2) delete an attribute 
from a class 3) replace the implementation of a method by a 
new implementation. For update on attribute, they classify it 
into two categories: 1) add an attribute to a class 2) delete an 
attribute from a class. Thus, as long as two class definition 
update methods access disjoint portions of a class 
definition, they can run concurrently. But, they do not 
consider any update on class hierarchy relationship. Also, it 
is suitable only for OODBS whose schema is continuously 
changing. For OODBS whose schema need not be changed 
frequently, the overhead may outweigh the concurrency 
provided.  

 

2.3. Concurrency between instance access and 
class definition access 



 In most concurrency control schemes dealing with 
class definition update, a class definition update method 
blocks every instance methods as well as class definition 
read methods (Cart, 1990; Kim, 1990; Servio, 1990; Malta, 
1991). Those studies take lock granularity as an entire class 
definition. In (Kim, 1990), since it provides a limited set of 
lock types, a class definition read does not commute with 
any instance write method. On the other hand, a class 
definition read method commutes with any instance read or 
write method in other studies (Cart, 1990; Servio, 1990; 
Malta, 1991). 

 Recently, in (Agrawal, 1992), they provide more 
concurrency for class definition updates by providing finer 
locking granularity. But, class definition updates in their 
work are limited to updates on attributes and methods. Also, 
each attribute accessed by an instance access method is 
also locked. This attribute locking is done individually at 
run-time, and thus incurs large overhead. 

 In this paper, we provide new commutativity relations 
among class definition update methods in order to increase 
concurrency. Our scheme includes all types of class 
definition updates and class definition read operations. We 
also provide a scheme which integrates instance access and 
class definition access to give better concurrency.  

 

3. Our Approach 

3.1. Concurrency among instance access 

 Our work improves the scheme developed in (Malta, 
1993) to achieve further increase in concurrency. Our scheme 
has four objectives. First, it still automates the process of 
commutativity relation construction. Second, it provides 
more concurrency than read and write access modes on 
methods. Third, it reduces deadlocks due to lock escalation. 
Finally, it increases concurrency among methods by 
exploiting run-time information. 

 Similar to (Malta, 1993), we need a two-phase pre-analysis 
which consists of two steps : 1) construction of DAV for 
each method and 2) construction of a commutativity table of 
methods. In each method, a break point is inserted by a 
programmer or a compiler when a conditional statement is 
encountered. Every method has a special break point called 
first break point before the first statement in the method. 
There are three kinds of DAVs in each method : 1) a final 
DAV of the first break point, which is a DAV of the entire 
method as in (Malta, 1993) 2) an initial DAV of the first break 
point, which is a union of access modes of each attribute 
used by statements between the first break point and the 
next break point and access modes of each attribute used by 
statements that are executed regardless of execution paths. 
A union operation is equivalent to max, e.g., N + W = W and 
3) an initial DAV of every other break point, which contains 
access modes of all attributes used by statements between 

this break point and the next break point (or end of the 
method). 
 For example, assume that we have three methods M1, M2 
and M3 and an class Y with four attributes a1, a2, a3 and a4. 
A, A1, A2, and A3 are breakpoints of M1, B is a breakpoint 
of M2, and C, C1, and C2 are breakpoints of M3. A union 
operation indicated as ‘⊕’ takes two arguments among N 
(null: no operation), R (Read), and W (Write) and selects the 
more restrictive one. Table 1 illustrates how the union 
operation works. 
 
 

  N R W 
 

N  N R W 
R  R R W 
W  W W W 

 
Table 1. Union operation table 

 
The contents and DAVs of each break point in the method 
are given below. 
 
 
method M1                         
[A] 
read a1                                      
If (a1 > 100) then             
{[A1]                    
a2 <= a1                 
End if               
read a2                      (*) 
If (a2 > 100) then 
[A2] 
a3  <= a2 
End if 
read a3                     (**) 
If (a3 > 100) then 
{[A3] 
call M2 
End if 
 
method M2                                          method M3  
[B]                                                        [C] 
read a1                                                  read a1 
read a4                                                  If (a1 > 100) then 
a4 <= a1                                                {[C1] 
                                                             return a1} 
                                                            else 
                                                             {[C2] 
                                                            read a2 
                                                               return a2} 
                                                             end if 
The DAVs constructed for method M1 are : 
 
initial DAV of [A] = {DAV of [A]} ⊕ {DAV of (*)} ⊕ 
                                {DAV of (**)}  



                          = [R,N,N,N] ⊕ [N,R,N,N] ⊕ [N,N,R,N] 
                           = [R,R,R,N] 
initial DAV of [A1] = [R,W,N,N] 
initial DAV of [A2] = [N,R,W,N] 
initial DAV of [A3] = final DAV of M2 = [R,N,N,W] 
final DAV of [A] = initial DAV of [A] ⊕ initial DAV of  
                              [A1] ⊕ initial DAV of [A2] ⊕ initial 
                              DAV of [A3]  
                         = [R,R,R,N] ⊕ [R,W,N,N] ⊕ [N,R,W,N] 

                             ⊕ [R,N,N,W]  

                          = [R,W,W,W] 

 

Similarly, the DAVs for M2 are : 

 
Final DAV of [B]  = [R,N,N,W]      
initial DAV of [B] = [R,N,N,W]    
 
and DAVs for M3 are 
 
Final DAV of [C]    =    [R,R,N,N] 
initial DAV of [C]   =   [R,N,N,N] 
initial DAV of [C1] = [R,N,N,N] 
initial DAV of [C2] = [N,R,N,N] 
 

While in the scheme proposed in (Malta, 1993), the DAVs for 
the methods would be: 

 

DAV of M1 = [R,W,W,W] 

DAV of M2 = [R,N,N,W] 

DAV of M3 = [R,R,N,N] 

 

 After the construction of the breakpoints’ DAVs in all 
methods, we create a commutativity relation of methods in 
the form of a table. In this table, a lock requester’s entries 
contain names of the final DAVs of the first break points in 
all methods (denoted as NF where N is the name of the first 
break point in each method). For example, AF  represents a 
final DAV of the first break point A in method M1, which is 
[R,W,W,W]. A lock holder’s entries contain names of final 
DAV of the first break point (denoted as NF), name of the  
initial DAV of the first break point (denoted as NB) and 
names of the initial DAVs of other break points (denoted as 
Ni where 1 ≤ i ≤ number of breakpoints -1 ) in each method. 
For example, in method M1, AF, AB, A1, A2 and A3 represent 
the following DAVs, [R,W,W,W], [R,R,R,N], [R,W,N,N], 
[N,R,W,N] and [R,N,N,W], respectively. Since we assume 
the worst case access mode for each attribute before 
execution, lock requesters always have the most restrictive 
access modes (i.e., final DAVs of the first break points). But, 
after a method execution, a lock holder may have a less 
restrictive access mode (i.e., initial DAV of the first or of the 

other break points). Two break points commute if their 
corresponding DAVs commute. Two DAVs commute if, for 
every attribute, its access mode in the two DAVs commute. 
Fig. 1 gives the commutativity tables constructed in our 
scheme and in the scheme proposed in (Malta, 1993). 

 Our concurrency control is based on two-phase 
locking (Eswaren, 1976). When a transaction invokes a 
method on an object, it gets a lock containing the final DAV 
of the first break point in the method. As the transaction 
meets a break point during run-time, the break point is 
recorded. After the method execution, the lock is changed 
from NF to NB,  NJ,...NS where NB is the name of the initial 
DAV of the first break point and NJ...NS are the names of the 
initial DAVs of other break points encountered during the 
method execution. Since the union of DAVs of NB, NJ,...NS 
may be less restrictive than the DAV of NF, this can give 
more concurrency to other transactions which request locks 
on the same object. For example, assume that a transaction 
T1 invokes a method M1 on instance i1 of class Y and has 
break points AB,  A1, and A2 after the execution of M1. 
Assume that another transaction T2 comes and invokes a 
method M2 on the same instance i1 while T1 still has a lock 
on i1. Applying our work gives commutativity between M1 
and M2 since a method M2 commutes with each of AI, AB 
and A2, by the commutativity table in Fig. 1. On the other 
hand, M1 and M2 do not commute by checking the 
commutativity table in Fig. 1 if the scheme in (Malta, 1993) is 
adopted. Note that O means commute, and X not commute. 

 

Commutativity table of our scheme 

lock holder        A F   A B    A1   A2    A3   BF   CF  CB    C1    C2     

lock          A F      X    X     X     X     X     X    X    O     O      X      

requester  BF      X     O     O     O     X     X    O    O     O      O         

                CF      X     O     X     O     O     O    O    O     O      O         

 

Commutativity table in (Malta, 1993) 

lock holder              M1      M2      M3 

 

lock           M1         X        X         X 

requester   M2         X         X        O 

                 M3         X         O         O 

Fig. 1. Examples of commutativity tables constructed for our 
scheme and for (Malta, 1993) 

3.2. Concurrency in class definition access 

 Class definition updates can be classified in three 
categories in OODBs (Kim, 1990; Zicari, 1991). The first and 
second categories are updates to the definition of a class, 
that is, to attributes of a class and to methods of a class. 



These updates include any changes to the attributes and 
methods defined for a class, such as changing the name or 
domain of an attribute, adding or dropping an attribute or a 
method. The third category is updates to a class-hierarchy 
structure. These include adding or dropping a class, and 
changing the superclass/subclass relationship between a 
pair of classes. We use CA, CM, and CCR to denote 
Changes to an attribute, Changes to a method, , and 
Changes to the superclass/subclass relationship, 
respectively. Likewise, for class definition reads, we use RA, 
RM and RCR to denote read to definition of attributes, read 
to definition of methods, read to superclass/subclass 
relationship, respectively. 

 We assume that updating the definition of a method 
does not affect the definition of any attribute. On the other 
hand, we assume that updating the definition of an attribute 
affects the definition of a method. This provides 
commutativity between CM and RA. But, we still assume 
that updating the definition of a class relationship may affect 
three definitions (attribute, method, class relationship) of a 
class. Based on these assumptions and the commutativity 
among class definition updates and class definition reads in 
(Cart, 1990; Kim, 1990), the following figure gives the 
commutativity relationships among class definition updates 
and class definition reads. The commutativity table defines 
relationships between lock requesters and lock holders on 
the same class. 

 

  CA CM CCR RA RM      RCR 

 

CA  X X X X X O 

CM  X X X O X O 

CCR  X X X X X X 

RA  X O X O O O 

RM  X X X O O O 

RCR  O O X O O O 

Fig. 2. Commutativity relationships among class definition 
updates and class definition reads 

 

 Using the above commutativity relationships, for 
class definition access methods, we get finer granularity 
locks and thus provide better concurrency than 
conventional OODBS such as Orion (Kim, 1990) and O2 (Cart, 
1990) do. The lock granularity in our work is one of CA, CM 
and CCR (for class definition update) and RA, RM. RCR (for 
class definition read). Whenever a class definition access 
method is invoked, we need to check commutativity  
between a lock holder and a lock requester using the 
commutativity table in Fig. 2 and grant a lock if they 
commute. The lock table format is of [trans-name, lock-type] 

where trans-name is a transaction holding a lock and lock-
type is a class definition access lock type ∈ {CA, CM, CCR, 
RA, RM, RCR}. For example, consider the following 
transactions on class Y.  

 

(transactions)        T1                            T2 

-------------------------------------------------------------------- 

(time) 

t                       CM (delete a method) 

t+1                                          RA (read an attribute) 

t+2                   RA (read an attribute) 

t+3                                         CA (delete an attribute) 

 

 The following table shows the locks obtained , at 
each time step, during the executions of transactions T1 and 
T2 in our scheme. We assume that the first execution occurs 
at time t. 

 

time           locks obtained by each transaction 

------------------------------------------------------------- 

t                  Y : [T1,CM]    

// T1 can get a CM lock since no other transaction has a lock 
on class Y //         

t+1              Y : [T1,CM] [T2,RA]    

// T2 can get an RA lock since CM and RA commute using 
the table in Fig. 2 // 

t+2              Y : [T1,CM] [T2,RA] [T1,RA]    

// T1 can get an RA lock since RA and RA commute // 

t+3              Y : [T1,CM] [T2,RA] [T1,RA]    

// T2 cannot get a CA lock since CA does not commute with 
RA // 

 

3.3. Concurrency between class definition access 
and instance access 

 For each class, when it is accessed for the first time 
by either an attribute definition access method or instance 
access method, an attribute access vector (AAV) is created. 
Also, when each class is accessed for the first time by a 
method definition access method or instance access method, 
a method access vector (MAV) is created. An AAV is to 
give parallelism between attribute definition access methods 
and between attribute definition access methods and 
instance access methods. Likewise, an MAV is to give 
parallelism between method definition access methods, and 



between method definition access methods and instance 
access methods. Each field in the AAV represents an 
attribute. For each attribute field, a value can have one of 
three values: W (update, set by CA), R (read, set by RA or 
RM or CM or instance access method), and N (null). Each 
field in MAV represents a method. For each method field, a 
value can have one of three values: W (update, set by CM), 
R (read, set by RM or instance access method), and N (null). 
These vectors are updated when a class definition access on 
attribute (or method) or instance access method is granted a 
lock. 

 The use of these vectors to increase concurrency is done 
as follows. 

• Lock requester is an CCR method: if lock is set by other 
transactions, block it. Otherwise, set CCR lock. 

• Lock requester is an RA or CA method: if CCR lock is set, 
block it. Otherwise, commutativity is checked by using AAV 
and sets R (for RA) or W (for CA) on the corresponding 
attribute in AAV if, for each attribute to be accessed by the 
lock requester’s method, the lock modes of the requester and 
holders are compatible. 

• Lock requester is an RM or CM method: if CCR lock is set, 
block it. Otherwise, the commutativity checking consists of 
two steps. Assume that the definition access to the method 
M1 is requested. 

a) commutativity is checked by comparing AAV with 
the M1’s DAV as follows: for each attribute whose 
value is R or W in the DAV of  M1, check if the attribute 
is W locked in AAV. If so, block the lock request on 
M1. Otherwise, perform step b) as below. 

b) check if the method field of M1 is W locked in MAV. 
If so, block the lock request on M1. Otherwise, set R (for 
RM) or W (for CM) lock in MAV, and R lock ( in AAV) 
for each attribute whose value is R or W in DAV of M1.  

• Lock requester is an instance method: if CCR lock is set, 
block it. Otherwise, the commutativity checking consists of 
two steps. 

a) commutativity is checked by comparing AAV with 
the lock requester’s DAV as follows: for each attribute 
whose value is R or W in the DAV of the instance 
access method, check if the attribute is W locked in 
AAV. If so, block the lock request by the instance 
access method. Otherwise, perform step b) as follows. 

b) check if the method field is W locked in MAV. If so, 
block the lock request by the instance method. 
Otherwise, set R lock (in MAV) in the corresponding 
method’s field, and R lock (in AAV) for each attribute 
whose value is R or W in DAV of the instance access 
method. 

• Whenever an CA or RA is committed by its  invoking 
transaction, the vector AAV is reset. 

• Whenever an CM or RM or instance access method is 
committed by its invoking transaction, the vectors MAV and 
AAV are reset. 

 

 The following table gives the commutativity relationships 
among class definition updates (CA,CM,CCR), class 
definition reads (RA,RM,RCR), and instance access methods 
(denoted by I) where ∆ means that two methods commute as 
long as they are accessing disjoint portions of an object. 

 

  CA CM CCR RA RM RCR I 

 

CA ∆ ∆ X ∆ ∆ O ∆ 

CM ∆ ∆ X O ∆ O ∆ 

CCR X X X X X X X 

RA ∆ O X O O O O 

RM ∆ ∆ X O O O O 

RCR O O X O O O O 

I  ∆ ∆ X O O O ∆ 

        Fig. 3. Commutativity relationship among class 
definition access and instance access  

 

 For example, with class Y defined in Section 3.1, consider 
the following method invocations by transactions T1, T2 
and T3. The following shows the locks obtained and 
changes in the vectors AAV and MAV, at each time step, 
during the execution of transactions T1, T2 and T3. We 
assume that the first execution occurs at time t. 

 

(transactions)    T1                       T2                      T3 

(time) 

t                       CA (a3)           

t+1                                           M2 on I1 

t+2                                                                     M3 on I1 

t+3                    RA(a2) (M1) 

 

 

 

time           locks obtained by each transaction 

 

t : Y : AAV [a1:N, a2:N, a3:W(T1), a4:N] 



// Lock CA requested by T1 is granted since no other 
transaction has a lock on Y. Thus, T1 needs to create AAV 
and sets W on a3 field. // 

 

t+1 : Y : AAV [a1:R(T2), a2:N, a3:W(T1), a4:R(T2)] 

                MAV[a1:N, a2:R(T2), a3:N] 

           I1 : [M2(BF), T2]  

// T2 invokes M2 on I1; check AAV if, for each attribute 
accessed by M2, there is an incompatible attribute access 
mode using DAV of M2. Also check the M2 field in MAV if 
some other transaction is updating M2. Since M2 does not 
access attribute a3 and the definition of M2 is not updated, 
the values of AAV and MAV are changed and M2 can get a 
lock on instance I1.// 

 

t+2: Y: AAV[a1:R(T2,T3),a2:R(T3),a3:W(T1),a4:R(T2)] 

                MAV[a1:N, a2:R(T2), a3:R(T3)] 

               I1 : [M2(BF), T2], [M3(CF), T3]  

// Repeat the work done in step t+1 for T3. By using 
commutativity table in Fig. 1, M2 request  by T2 is granted 
on I1. // 

 Assume that break points CB and C2 are met during the 
execution of M3 // 

 

t+3: Y:AAV[a1:R(T2,T3),a2:R(T2,T3),a3:W(T1),a4:R(T2)] 

                MAV[a1:N, a2:R(T2), a3:R(T3)] 

          I1 : [M2(BF), T2], [M3(CB, C2), T3]  

// Check a2 field in AAV if another transaction is already 
updating a2.. If so, block the requester. Otherwise, set R on a2 
in AAV. Since a2 is not being updated by any transaction, 
RA lock requested by T2 is granted. // 

 Note that the instance access requests by T2 and T3 are 
blocked if we adopt the locking schemes in (Cart, 1990; Kim, 
1990). In our work, we can increase concurrency among class 
definition access and instance access by taking finer 
granularity locks on class definition access. 

 One may argue that updating AAV and MAV whenever 
an instance access method is invoked incurs too much 
overhead. This is true especially for OODB systems whose 
schema need not be changed frequently. In this case, the 
overhead imposed by the technique proposed here may 
outweigh the concurrency increased. For such OODB 
systems, we take granularity as all attributes for RA or CA 
and all methods for RM or CM rather than individual 
attribute or method. Also, for instance access methods, we 
use RA and RM locks on class, instead of using AAV and 
MAV. That is, we adopt the following protocol, which is 
based on the technique discussed in Section 3.2. 

• When a transaction invokes an instance access method, 
get RA and RM locks and check commutativity among 
instance access methods. 

• When a transaction which has invoked an instance access 
method is committed, release RA and RM locks. 

 

4. Further Work 

 This paper presents an integrated concurrency 
control scheme to enhance concurrency among methods in 
OODBS. The scheme deals with concurrency among 
instance access, among class definition access, and among 
class definition access and instance access. Especially, for 
better concurrency among class definition access and 
instance access, our scheme provides different treatments 
for two types of object-oriented databases : one whose 
schema is continuously changing, and one whose schema 
needs not be changed frequently. 

 In our work, an instance access method may have many 
break points depending on the method’s logic. This requires 
larger commutativity tables and also incurs much run-time 
overhead for lock changes and commutativity checking. 
Thus, we need a way to reduce the number of break points in 
a method in order to reduce space and time overhead for lock 
changes and commutativity checking during run-time. In this 
paper, we do not include the techniques used to reduce 
break points. Also, in this study, we do not consider class 
hierarchy, which is an important property in OODBS. Due to 
inheritance, a query-type access or class definition access 
may involve a class and all its subclasses. Currently, we are 
developing a scheme, which incorporates class hierarchy 
into our current work, aiming at less locking overhead on 
class hierarchy. 
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