
An Integrated Commit Protocol for Mobile Network Databases

Joos-Hendrik Böse
Freie Universität Berlin

Inst. of Computer Science
Takustr. 9

14195 Berlin; Germany
boese@mi.fu-berlin.de

Stefan Böttcher
University of Paderborn

Inst. of Computer Science
Fürstenallee 11

33102 Paderborn; Germany
stb@uni-paderborn.de

Le Gruenwald1

The University of Oklahoma
School of Computer Science

200 Telgar street
Norman, OK 73019-3032; USA

ggruenwald@ou.edu

Sebastian Obermeier
University of Paderborn

Inst. of Computer Science
Fürstenallee 11

33102 Paderborn; Germany
so@uni-paderborn.de

Heinz Schweppe
Freie Universität Berlin

Inst. of Computer Science
Takustr. 9

14195 Berlin; Germany
schweppe@mi.fu-berlin.de

Thorsten Steenweg
University of Paderborn

Inst. of Computer Science
Fürstenallee 11

33102 Paderborn; Germany
steenweg@uni-paderborn.de

Abstract

While traditional fixed-wired network protocols like 2-
Phase-Commit guarantee atomicity, we cannot use them in
mobile low bandwidth networks where network partition-
ing, node failure, and message loss may result in blocking.
To deploy traditional database applications easily into a
mobile environment, there is a demand for a protocol which
guarantees an atomic commit of transactions. This pa-
per introduces a protocol which can guarantee such atomic
commitment in mobile environments using a combination of
commit and consensus protocols. In addition, it takes ad-
vantage of mobile network sub-structures like single-hop-
environments to reduce message transfer costs.

1. Introduction

Whenever database technology shall be applied to a net-
work of mobile devices, we face a lot of new challenges in-
cluding guaranteeing transaction atomicity in the presence
of lost connections and node failures. This atomic transac-
tion commitment is necessary to deal with concurrent trans-
actions in complex systems like distributed databases, peer-
to-peer systems, and service oriented architectures. 1

The problems like message delay, disconnection of
nodes, and network partitioning have been studied and a

1This work was supported in part by National Science Foundation
Grant No. IIS-0312746

number of solutions have been proposed to solve these prob-
lems. However, in these solutions there is either a large
number of messages slowing down the whole system, or
the assumptions for the network are so strict that they can-
not always be guaranteed (e.g. we cannot always assume a
maximum percentage of messages that will not be lost).

For practical applications, we need a non-blocking
atomic commit protocol that not only reduces the number
of exchange messages but also handles network partition-
ing and takes advantage of single hop communication which
exists in some network structures. In this paper, we present
such an atomic commit protocol for non-compensatable, flat
transactions that would not block connected and running
nodes.

The rest of the paper is organized as follows. Section
2 describes our assumed system architecture. Section 3
presents our commit protocol and its costs in terms of num-
ber of messages. Section 4 discusses related work. Finally
Section 5 concludes the paper.

2. Proposed Solution – Architecture and Re-
quirements

This section describes the system architecture for which
our protocol is designed. Section 2.2 summarizes the re-
quirements that our commit protocol has to fulfill, while
Section 2.3 outlines the assumptions concerning the execu-
tion environment of our protocol.

1

2.1. Architecture

In our system, we assume that there is an Initiator
of a transaction that divides a flat transaction into sub-
transactions and submits each sub-transaction to a different
database. We assume, that these sub-transactions, running
on individual databases, are considered to be not compen-
satable. After the execution of the sub-transactions, the par-
ticipating databases start our atomic commit protocol. Fur-
thermore, we assume that there is a group of f nodes in the
mobile network, that are relatively stable and closely con-
nected, e.g. in a single-hop distance of each other. Such a
group of nodes is chosen to be the coordinators that handle
transaction commitment. We call them the cluster of coor-
dinators and we assume that at any time at least one node
of this group will survive. The whole cluster itself acts as
a commit coordinator and the databases act as participants
in the 2-phase commit (2PC) protocol. In comparison to
traditional 2PC where the transaction manager initiates and
coordinates the transaction, we separate the roles in such a
way, that we have the Initiator, the Database, and the Co-
ordinators running on different machines. Consequently,
whenever an application starts a transaction involving more
than one database, the node where the application is running
on becomes an Initiator and selects different coordinators
that decide about the final commit decision.

Each coordinator is a representative for the commit de-
cision of one or more databases. There is a main coordi-
nator that makes the global commitment decision for all
coordinators. As illustrated in Figure 1, there are coordina-
tors C1 . . . C4 where C1 is the main coordinator. C4 is the
coordinator for databases DB5 and DB6.

C1

DB2

DB3

DB7

C2

C3

DB1

C4

DB4

DB6

DB5

I initiator

C coordinator

DB database

3PC

2PC

I

Figure 1. System architecture for our atomic
commit protocol

2.2. Requirements

The main requirement is that our commit protocol guar-
antees the atomic execution of non-compensatable transac-
tions.

Due to the loss of messages in mobile networks (e.g. link
failures) and our goal to minimize the network traffic oc-
curred due to transaction commitment, we allow our proto-
col to abort a transaction, even if all databases already voted
for commit. But we want the protocol to be one-sided cor-
rect for the abort decision, i.e. if one participant votes for
abort, the decision must be abort.

A database using our protocol should not be blocked
even if some other databases or coordinators that are needed
to execute the transaction fail. However, there are two sce-
narios, where we allow blocking, i.e.

• if all coordinators fail or
• if network partitioning occurs.

In the first case, we have to wait until one of the coordina-
tors has recovered.

In the second case, when we cannot exclude network
partitioning, [1] proved that there exists no non-blocking
atomic commit protocol. However, if network partition-
ing occurs, we want our protocol to minimize the number
of blocked databases and coordinators. If we can totally
exclude network partitioning, our protocol should even be
non-blocking as long as at least one coordinator still func-
tions.

A transaction affecting more than one database is split
by the initiator into several sub-transactions, each running
on an individual database.

A database failure after the vote of this database has been
received by the cluster of coordinators should not affect the
transaction’s commit status.

Whenever a mobile network contains a group of closely
connected nodes, e.g. in one-hop distance, we want our pro-
tocol to take advantage of this locality by preferably using
such a group of nodes as atomic commit coordinators.

Our commit protocol should combine the advantages of
the 2-phase-commit (2PC), i.e. its practical relevance and
the minimum number of messages required, the 3-phase-
commit (3PC) [11], i.e. its non blocking behavior, and the
Paxos Consensus Protocol [7], i.e. its behavior in case of
network partitioning.

We allow nodes to be fail-stopped, that means they stop
working after a failure. However, a node may even drop
messages if its buffer is full.

2.3. Underlying Assumptions

We assume that no byzantine failures occur, i.e. no node
sends fake messages.

When a node is not able to finish the current transaction
(e.g. because a loss of power), it tries to inform the other
nodes. If it can inform the other participants of this situa-
tion, we call this a controlled failure.

2

Initiator DB Coordinators Main-Coordinatortransaction vote: commit votes of DB_n...mprepare: forward commitacknowledgmentcommit validdoCommit

Cluster of Coordinators

result
Figure 2. Sequence diagram of the failure free
case

3. Proposed Solution – Commit Protocol

The problem of using the 3PC protocol for Mobile Ad-
hoc Network (MANET) database applications is that the
number of messages required is very high. We minimize
this disadvantage by using the cluster of coordinators for
our commit protocol, which is preferable in single-hop dis-
tance.

While communication with the databases is done using
the popular 2PC protocol, our cluster of coordinators uses
the 3PC protocol to eliminate the blocking behavior of 2PC
in case of coordinator failure (cf. Figure 1). The advantage
of our new protocol lies in the fact that the cluster of co-
ordinators is located in an environment with fast message
transfer. In the following, we assume that this cluster of co-
ordinators is situated in single-hop distance, but this single-
hop property is not a strict requirement. In addition, if we
assume that network partitioning cannot split this cluster of
coordinators, the protocol can proceed without blocking the
coordinators even if some of them fail. The details are given
in Section 3.1.

If we cannot safely determine that this cluster of coor-
dinators is not partitioned, or if it seems that the main co-
ordinator has failed, we run a termination protocol which
uses the ideas of the Paxos Consensus Protocol ([7]) to get
a decision on the transaction, which is described in Section
3.2.

3.1. Normal Case – Failure Free

When there is no node or link failure, our protocol works
as follows. As shown in Figure 2, the transaction execution
is initiated by an initiator which could be a separate node
or a database itself. In order to execute a transaction T ,
the initiator node divides T into subtransactions and sends
the subtransactions to appropriate participating databases.
Each participating database executes the subtransaction un-
til it can decide to vote for commit/abort. Then it sends this
vote to its associated coordinator. Each associated coordina-
tor starts its timer and accepts votes from other participating
databases for a certain period of time. When the time has
passed, the coordinator will no longer accept messages. The
coordinators then bundle their collected commit/abort votes
and forward them to the main coordinator. After a specified
period of time, the main coordinator decides on a global
commit/abort and informs the coordinators. The main co-
ordinator’s decision is to commit the transaction if all votes
are to commit; and is to abort otherwise. The coordinators
then wait for a “prepare-to-forward-commit message” from
the main coordinator, and upon receiving this message, they
send an acknowledgment message to the main coordinator.
After having received all acknowledgment messages, the
main coordinator sends a “commit valid” message to the
coordinators. Each coordinator forwards the decision to its
associated databases (or the databases themselves will ask
for the decision in case of message loss), so that the data-
bases can perform the necessary actions.

In summary, the whole cluster of coordinators acts as a
commit coordinator and the databases as the participants in
the 2PC protocol, while the main coordinator acts as the
commit coordinator and the individual coordinators act as
the participants in the 3PC protocol.

3.2. Failure Handling

In this section, we describe failures occurring during the
protocol execution and how the protocol handles them. If
we observe frequent message loss or long sub-transaction
execution time, we first encourage participants to ping a
communication partner before presuming that it has failed.
However, our protocol is able to deal with participant fail-
ure, too.

Mobile applications would require our commit protocol
to be strongly non-blocking and work one-sided correctly.

3.2.1. Individual Coordinator Failures

If one or more coordinators except the main coordinator
fail or do not acknowledge the decision message, databases
have to contact and communicate with the next coordinator
C((i+1)modf)+1. From the databases’ point of view, the data-

3

bases themselves are the active components and are asked
to find a running coordinator.

3.2.2. Loss of Votes

We allow global aborts even if all databases voted for com-
mit. Such an abort can occur if a coordinator fails after it has
acknowledged its associated databases’ commit/abort vote.
Consequently, this vote is lost and cannot be forwarded to
the main coordinator, which, after a timeout, will eventually
decide on abort since it does not have all necessary commit
votes. The abort information is sent to all remaining coor-
dinators which acknowledge and wait for a “declare valid”
message before forwarding this information to their associ-
ated databases. We must allow this abort decision in order to
ensure termination of a transaction if one coordinator fails
before forwarding votes.

To describe the transaction termination protocol, we
have to distinguish between the databases’ physical com-
mit command and the coordinators’ commit decision. The
latter must be forwarded to the databases which can then
complete the transaction. In the following, we will refer to
the coordinators’ commit decision.

3.2.3. The Main Coordinator’s Failure and Network
Partitioning

This section explains the coordinators’ behavior in case they
cannot communicate with the main coordinator anymore.
Our protocol uses two concepts which are used in the Paxos
Commit ([7]) to terminate a transaction even in the case of
network partitioning with at least (1/2f + 1, where f de-
notes the total number of coordinators) coordinators in one
partition: Quorums and version numbers. Quorums enable
a decision to become valid after a majority of coordinators
have agreed on the decision. The concept of version num-
bers is introduced in order to have a unique interim coordi-
nator every time. These two concepts are used to guarantee
that no new interim main coordinator can change a decision
that has been accepted by the majority. However, a proposal
of an interim coordinator can be rejected by a new interim
coordinator as long as the majority has not accepted the de-
cision.

Whenever a coordinator does not get a decision message
from the main coordinator after a time out, this coordinator
decides that the main coordinator may have failed and takes
over its role. It must assign itself a version number and
query at least (1/2f + 1) other coordinators for the latest
state they have reached in the 3PC protocol. It will then
take over the previous main coordinator and adopt the latest
proposal in terms of commit/abort decision of which it has
knowledge.

The purpose of the version number is that the coordinator
with the highest version number is the currently valid main

coordinator. If there are any coordinators with lower self-
assigned version numbers, other coordinators with higher
numbers may have assumed that the previous main coordi-
nator has failed and therefore assigned themselves a higher
number. Every coordinator can only communicate with the
interim main coordinator with the highest number of which
the coordinator has knowledge. This ensures that we have
versioned decisions and that the decisions will not change.

A decision becomes implicitly valid when the (1/2f +
1)th coordinator has received it. At this time, it is ensured
that any new main coordinator will receive the latest deci-
sion since it also has to query (1/2f + 1) coordinators.

3.2.4. Majority Decisions in Case of Network Partition-
ing

This section explains the message flow in case a coordinator
assumed the main coordinator to have failed. After one co-
ordinator decides that the main coordinator may have failed,
it declares itself to be an interim main coordinator. For this
purpose, it performs the following four steps.

1. The new interim main coordinator has to assign itself
a version number greater than the maximum of 0 and
the version number of any other interim coordinator of
which it has knowledge.

2. Then it queries every other coordinator for the state it
has reached during the execution of the 3PC protocol
(cf. Figure 3) and the version number of the previ-
ous main coordinator with which it communicated.The
new main coordinator needs at least (1/2f + 1) re-
sponses to proceed, otherwise it has to wait.

The coordinators must communicate only with the co-
ordinator having the highest version number. If a coor-
dinator has to reject a message of another coordinator
with a lower version number, it informs the other co-
ordinator of the higher version number. If a coordina-
tor gets two messages with the same version number
from different coordinators, the first message will be
accepted and the subsequent can be rejected.

3. The new main coordinator takes those responses with
the highest version number and decides based on the
states of the responses.

If the responses
• contain at least one proposal, i.e. vote commit

or vote abort, of any other interim coordinator: it
adopts this proposal.

• contain only wait states in the 3PC protocol: it
proposes abort

• contain at least one “Prepare to Commit” state in
the 3PC protocol: it proposes “prepare” and con-
tinues the normal execution of the 3PC protocol

4

This means the new main coordinator will either
adopt the latest proposal the previous main coordina-
tor made, or, if there was no proposal, it will abort the
transaction.

4. The interim main coordinator sends the new decision
to those (1/2f + 1) coordinators it has just informed
that it is the new main coordinator.

A non-interim coordinator behaves in the following way:
If it gets a state query message, it responds only if the ver-
sion number of the new self-appointed main coordinator is
greater than the version number of any other main coordi-
nator to which it has communicated. It will reject messages
from coordinators with lower or equal version numbers.

The consensus protocol works because a decision is valid
at the time when the (1/2f + 1)th coordinator has gotten
the decision. Because a new main coordinator has to query
more than half of the other coordinators, it is guaranteed
that if there was a valid decision, the new main coordinator
will get this decision in its first querying phase. Because the
new main coordinator must adopt the latest proposal it has
received, a valid decision will not be changed anymore.

Vi

Ci

AiWi

Pi

votei

yesi votei

noi
aborti

preparei

acki
commiti---

Vi Vote

Wi Wait

Ai Abort

Pi Prepare

Ci Commit

Figure 3. States of 3-Phase-Commit

In addition, we rely on the fact proved in [11] that in 3PC
no coordinator can be two states in advance. This includes,
for example, a Prepare state which guarantees that no coor-
dinator can have a valid commit state while another one is in
a wait state. Since the main coordinator sends a Prepare to
Commit message only after all participants have voted for
commit, it is sufficient to have one coordinator in this pre-
pare state to be sure that every database voted for commit
and no coordinator can be in an abort state.

Figure 3 illustrates the coordinators’ states and the reac-
tion to the main coordinator’s messages. If the coordinators’
bundled vote messages do not contain an abort decision, the
coordinators proceed to the wait state Wi and wait for the

main coordinator’s decision. If this decision is Commit, the
main coordinator sends a “Prepare” message to the coor-
dinators, which then proceed to the state Pi and send an
acknowledgment to the main coordinator. After the main
coordinator received all acknowledge messages, it sends the
commit decision to the coordinators which forward this de-
cision to their associated databases.

Due to the behavior of the main coordinator, which
proceeds only to the next state if all coordinators send
their votes or all coordinators send their acknowledgment,
any two coordinators cannot be more than one state apart.
Therefore we can decide on the fate of the transaction at any
time.

3.2.5. Minority Termination Decisions

If we are able to guarantee that network partitioning would
not occur, no coordinator can be disconnected from the
whole system while communicating with other coordina-
tors. This is possible if commit coordinators provide con-
trolled failures, i.e. inform the other coordinators before
they fail (e.g. because of low energy). This knowledge
that some coordinators have failed can be used to reduce
the number of coordinators needed to come to a majority
decision. In other words, it is sufficient to have the majority
of all nodes except those which are known to be down. In
this case, we do not need a majority of (1/2f + 1) remain-
ing coordinators to complete the transaction. In an extreme
case, it is even possible to come to a commit decision when
all nodes except one perform controlled failures.

If we cannot exclude network partitioning but are able to
detect it, a new interim main coordinator which does not get
the necessary majority of (1/2f+1) remaining coordinators
can try to check that a network partitioning did not occur. If
network partitioning can be excluded because of controlled
termination of some coordinators, the interim main coordi-
nator can continue because now we are sure that sufficiently
many other coordinators have failed and they cannot com-
municate with the others anymore.

3.2.6. Required Logging

Compared to 2PC, the databases must write the same states
and information into their log. Besides, the participants of
the cluster of coordinators have to log the final decision in
order to inform the databases after a failure. However, they
do not need to log every state of the 3PC execution since
our protocol proceeds if more than half of the coordinators
are running. Therefore, the failed coordinators can request
a final decision from the running coordinators.

5

3.3. Communication Costs

We consider the number of messages in the normal case
where a transaction is committed successfully. We assume
that we have n databases and f coordinators. When the
Initiator distributes the transaction to the participating data-
bases, the necessary transaction information (e.g. who is the
main coordinator; who are the other coordinators) is sent
within the same message, i.e. it does not require any extra
message. Figure 2 shows the message flow. In the failure
free case we have at most

• n messages of the Initiator to the databases, including
the subtransaction and the request to send a vote about
the subtransaction to one coordinator

• n messages “vote: commmit” or “vote: abort” from
the databases to a coordinator

• f messages from one coordinator to the main coordi-
nator (votes from the databases associated with a coor-
dinator are bundled in one message for the coordina-
tor)

• 3f messages using the 3PC (f messages from the main
coordinator to the coordinator: “prepared?”; f mes-
sages are sent back from the databases to the main co-
ordinator: “prepared!”; f messages from the main co-
ordinator to the coordinators: “commit/send decision
to your databases”)

• n messages “do Commit” from the coordinators to the
databases.

• 1 message from the main coordinator to the Initiator
(“transaction is committed/aborted”).

Summing up all messages, we have a total of (3n+4f +
1) messages. 4f messages are sent within the cluster of co-
ordinators where message transfer is very fast because of
one-hop communication among coordinators. The remain-
ing messages are the costs of the normal 2-Phase-Commit
which is implemented in many database applications.

4. Related Work

The non-blocking behavior of commit protocols has
been studied in the literature. Message loss and node failure
turned out to be the two main problems for atomic commit.
[4] even proved that a commit decision is not possible under
the assumption of message loss within the well known co-
ordinated attack scenario. In this scenario the commit deci-
sion is that two generals must agree on a time for a common
attack using an unreliable communication channel.

While our approach does not fulfill some requirements
of this coordinated attack scenario (e.g. strict time con-
straints), other approaches attempt to identify message loss
and node disappearance with special cross-layer protocols

([12], [2]). However, in current mobile networks, these
protocols are difficult to implement because they need new
communication protocols. Therefore, we focus on atomic
commit protocols that work on the TCP/IP layer and are
applicable to mobile networks regardless of the underlying
transport protocol.

Of course, there are attempts to guarantee message de-
livery on the TCP/IP layer, mainly by the use of “reliable
multicast protocols” (e.g. [3] and [10]). This group of pro-
tocols uses a reliable uniform multicast protocol for sending
messages. Therefore, the protocols can guarantee that cer-
tain messages arrive even if a node disconnects temporar-
ily. To do so, they flush the transaction log before send-
ing a message or commit decision so that other nodes do
not need to wait for the recovery of the disconnected node.
However, these protocols assume that there is a limit on the
maximum number of messages lost. They also cause an
enormous traffic due to the multicasting of messages. This
impedes practical usage in dynamic mobile networks with
low bandwidth.

Our approach aims at a practically useful solution and
follows [11] in the way that we use 3PC) for the commu-
nication of coordinators. However, we combine the use of
3PC with 2PC in order to reduce the amount of messages
transferred.

In addition, we employ a termination protocol which
uses the idea of the Paxos Consensus ([7] and [9]). How-
ever, we do not follow Lamport by using the Paxos Commit
Protocol ([5]) to get a consensus on the commit state as this
approach does not take advantage of one-hop-environments
and has a lot of message overhead when there are many
coordinators. Furthermore, if the coordinators know that
there is no network partitioning in the cluster of coordi-
nators, our protocol is able to be non-blocking even with
only one remaining coordinator (the Paxos Commit Proto-
col needs at least (1

2f + 1) remaining coordinators, where
f denotes the total number of coordinators). If we cannot
exclude or safely detect a network partitioning, our proto-
col needs (1

2f + 1) coordinators to be running in the same
network partition to get a commit decision for the transac-
tion. Otherwise, [1] proved that it is inevitable to wait until
the network is connected again. In this case, the number
of remaining coordinators is the same as that in the Paxos
Commit Protocol.

There is a recent proposal to transfer the 2PC protocol
to mobile environments (c.f. [8]), but this proposal assumes
that any failed participant would recover and reconnect to
the system, while our scenario is free of blocking even if a
participant has failed and does not recover.

In [6], a timeout based protocol is suggested, but this
protocol assumes that a fragment compensation is possible
in case of participant failure. In contrast, we do not need this

6

compensation requirement and can even consider a (sub-)
transaction to be not compensatable.

5. Summary and Conclusion

We have presented an atomic commit protocol which is
designed for the use in mobile networks and takes advan-
tage of special mobile network structures like single-hop-
communication. Because the traditional 2-Phase-Commit
protocol is not suitable in mobile networks due to the block-
ing behavior in case of node or link failures, our protocol is
aimed at handling new challenges including network parti-
tioning, node failures and message loss in a blocking-free
manner. This is ensured by the use of the 3-Phase-Commit
protocol in the cluster of coordinators. If we can only de-
tect that no majority of coordinators is reachable, but can
not exclude the occurrence of network partitioning because
of controlled termination of coordinators, our protocol is
still better than previous commit protocols in the follow-
ing ways. Our protocol blocks only in situations when we
do not have more than half of the coordinators which are
working or in an unknown state in one network partition.
However, this blocking in split asynchronous networks has
been proved to be unavoidable ([1]).

Compared to the Paxos commit protocol, our protocol
uses consensus only in case of failure for termination pur-
poses. As a result, we need fewer messages for communi-
cation between the coordinators and the databases.

In addition, our protocol’s logic resides in the cluster
of coordinators; so we can keep the widely used 2PC of
database applications and use our protocol as an extension.
As only slight modifications are needed for standard data-
bases, our protocol is easy to implement as an extension to
the 2-Phase-Commit protocol. Therefore, we consider our
approach to be a useful contribution for transferring fixed-
wired applications into mobile environments.

References

[1] P. Ancilotti, B. Lazzerini, C. A. Prete, and M. Sacchi. A dis-
tributed commit protocol for a multicomputer system. IEEE
Trans. Comput., 39(5):718–724, 1990.

[2] M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-
layering in mobile ad hoc network design. IEEE Computer,
37(2):48–51, 2004.

[3] L. George and P. Minet. A uniform reliable multicast pro-
tocol with guaranteed response times. In LCTES ’98: Pro-
ceedings of the ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, pages 65–82.
Springer-Verlag, 1998.

[4] J. Gray. Notes on data base operating systems. In Operating
Systems, An Advanced Course, pages 393–481. Springer-
Verlag, 1978.

[5] J. Gray and L. Lamport. Consensus on transaction commit.
CoRR, cs.DC/0408036, 2004.

[6] V. Kumar, N. Prabhu, M. H. Dunham, and A. Y. Seydim.
Tcot-a timeout-based mobile transaction commitment pro-
tocol. IEEE Trans. Comput., 51(10):1212–1218, 2002.

[7] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, 1998.

[8] N. Nouali, A. Doucet, and H. Drias. A two-phase commit
protocol for mobile wireless environment. In H. E. Williams
and G. Dobbie, editors, Sixteenth Australasian Database
Conference (ADC2005), volume 39 of CRPIT, pages 135–
144, Newcastle, Australia, 2005. ACS.

[9] R. D. Prisco, B. W. Lampson, and N. A. Lynch. Revisit-
ing the paxos algorithm. In Distributed Algorithms, 11th
International Workshop, WDAG ’97, Saarbrücken, Ger-
many, Lecture Notes in Computer Science, pages 111–125.
Springer, 1997.

[10] A. Schiper and A. Sandoz. Uniform reliable multicast in
a virtually synchronous environment. In Proceedings of
the 13th International Conference on Distributed Comput-
ing Systems (ICDCS-13), pages 561–568, Pittsburgh, Penn-
sylvania, USA, 1993. IEEE Computer Society Press.

[11] D. Skeen. Nonblocking commit protocols. In Y. E. Lien, ed-
itor, Proceedings of the 1981 ACM SIGMOD International
Conference on Management of Data, Ann Arbor, Michigan,
pages 133–142. ACM Press, 1981.

[12] A. Varshavsky, B. Li, and E. de Lara. Cross-layer flow con-
trol in lightly-loaded multi-hop ad hoc networks. In ICPP
Workshops, pages 315–321, 2004.

7

