A Data Priority Reload Technique for Real-Time Main Memory Databases

Jing Huang Le Gruenwald'
School of Computer Science
The University of Oklahoma
200 Felgar Street, Room 114 EL
Norman, OK 73019
EMAIL: gruenwal @mailhost.ecn.uoknor.edu
PHONE: (405) 325-3498
FAX: (405) 325-4044

Abstract

In this paper a data priority reload algorithm is pro-
posed for real-time main memory database systems that
allows transaction processing to be resumed before the
entire database is recovered from a system failure. Trans-
action execution priority, reload priority and reload pre-
emption are taken into account during the reload process;
this enables transactions with high execution priorities to
have more opportunities to meet their deadlines and thus
enhances the overall system performance. This algorithm
~also gives temporal data a higher reload priority than
persistent data so that many temporal data can be used
before losing their validity, which in turn minimizes the
number of transactions aborted or delayed due to invalid
data access. Based on the simulation results obtained, we
can draw the following conclusions: (1) The data priority
reload algorithm provides a significant performance im-
provement over the conventional reload approach. (2)
Whether the efficiency of different reload algorithms is
crucial to the overall performance mainly depends on the
system load, database size and system failure rate. (3) The
key facrors of the design of real-time MMDB reload al-
gorithms are system unavailability, transaction execution
priority, and reload threshold. In order to derive an effi-
cient reload scheme, these factors must be studied care-

Sfully.

1. Introduction

Many real world applications involve time constrained
access to data, for example, telephone switching systems,

! This material is based in part upon work supported by National Science
Foundation under Grant No. IRI-9201596.

1068-3070/96 $5.00 © 1996 IEEE
Proceedings of EURWRTS °96

96

program stock trading and radar tracking. All of these
entail gathering data from the environment, processing
gathered information, and providing responses within a
specified time or deadline. Another aspect of these appli-
cations is that they might process both temporal data,
which lose their validity after a certain time interval, and
persistent data which remain valid regardless of time.
Applications such as these introduce the need for real-
time database systems (RTDBS). The main goal of an
RTDBS is to meet the timing constraints of transactions
and data [14]. In order to achieve higher system perform-
ance, the use of a main memory database (MMDB) is a
good choice. This is because in an MMDB environment,
all or a major portion of the database can be memory-
resident, thus transaction processing can be satisfied with
few I/Os. An MMDB system therefore has a potential for
obtaining a substantial performance improvement over a
disk-resident database system for real-time applications.
However, due to the volatility of semi-conductor mem-
ory, the contents of main memory may be lost at the time
of system crash caused by power failures, software or
hardware errors. On average, a system failure occurs once
a week ([5], [7]). As the database is not available for
transactions when a failure occurs, system performance
degrades severely. For a large database, simply transfer-
ring it from archive disks to main memory can be very
time-consuming. As estimated in [11], 28.43 minutes are
needed to recover one gigabyte database. For a high per-
formance system which processes 1000 transactions per
second, there might be many transactions that are back-
logged during system recovery, which may cause many
transactions to miss their deadlines and a large amount of

temporal data to lose their validity before they can be
used. In order to resume transaction processing quickly
without degrading the system performance, an efficient
reload technique, which reloads the archive database into
main memory and reconstructs the consistent state of the
database, needs to be developed.

Several reload techniques have been developed for
MMDB database systems [6]; however, not much research
has been done for RTDBS. In this paper, we propose a
data priority reload technique for a real-time MMDB sys-
tem, which aims at not only reducing the system restart
time, but also minimizing the number of timing con-
straints which are violated. In order to evaluate the per-
formance of the proposed reload technique, extensive
simulation experiments are conducted.

The remainder of this paper is organized as follows. We
start in Section 2 with a description of the system as-
sumption used throughout this study, then introduce in
Section 3 the reload terminology we will use to discuss the
reload algorithms in the following sections. The data pri-
ority reload algorithm is presented in Section 4. The
simulation model and methodology are provided in Sec-
tion 5. Performance experiments and results are analyzed
in Section 6. Finally, Section 7 concludes the paper.

2. System Assumption

In this section, we introduce the system architecture
which will be used throughout this study. Two processors,
Database Processor (DP) and Recovery Processor (RP),
running ‘in parallel are assumed in the system. The DP
handles normal transaction execution while the RP man-
ages transaction termination, logging, checkpointing and
recovery from a system failure.

We assume that the entire database i8 stored in a vola-
tile Main Memory (MM), while its backup copy is kept in
an Archive Memory (AM) residing on secondary storage.
The database on AM is updated only when a checkpoint is
taken. Fuzzy checkpointing [8], which does not require
the system to be quiescent during the checkpoint process,
is assumed in this work. Based on our previous studies
[91, when being combined with deferred update, the log-
ging scheme, which logs both valid and invalid temporal
data, and maintains persistent data and temporal data log
records in separate log buffers, gives the best performance
in terms of logging space, number of memory references
and cost to perform REDO operations. This technique is
thus assumed in this work. With this logging technique,
modified data are kept in the log until a successful com-
pletion of the transaction performing the updates is as-
sured, at which time the modifications are applied to the
database. Log buffers are assumed to be large enough to

97

contain all updates of active transactions. When a log
buffer is full, its contents will be flushed to a log disk.

As we mentioned earlier, temporal data may get old or
become invalid if they are not updated within a certain
period of time. To quantify this notion of “age”, each
temporal data item is associated with two attributes:
timestamp (T,p40) and valid interval (Interval). T,puue
indicates the update time of a temporal data item, which
denotes the real time when an observation relating to the
data item is made, and [lnterval represents the absolute
validity interval of a data item, i.e., the length of time
interval following the update time during which the data
item is considered to have absolute validity. A temporal
data item is said to be valid or meet the absolute temporal
consistent requirement at the current time 7, if
Tnow — Tupdate < Interval holds.

We also assume that for temporal data whose valid in-
tervals are shorter than the time needed to reload a cylin-
der into MM, no logging and checkpointing will be per-
formed on them. Note that a cylinder is assumed to be the
smallest unit of data to be reloaded without preemption
used by the system for prefetch reload. This is because in a
real-time database system, there may be some temporal
data items whose valid intervals are very short. After a
system crash, by the time the AM is accessed for database
reload and post-crash log processing is performed for the
reloaded database in MM, they would have already be-
come invalid. These will not only result in a waste of sys-
tem resources such as log buffer space, log disk flush time
and recovery time, but may also. delay the fresh updates
for these data items, which consequently leads to a poor
system performance in terms of transaction meeting dead-
lines.

3. Reload Terminology

This section explains all the terminology we will use in
our discussion. Transaction Priority represents the execu-
tion priority of a transaction, which the resource manager
uses to assign resources, such as DP and RP, to the trans-
action during its execution. Reload Preemption means
that reload of some data is suspended and replaced by
reload of some other data. Reload Granularity is the
smallest unit of data to be reloaded from AM to MM.
During the reload of this unit, no preemption by a reload
of higher priority is allowed. Recovery Unit is the smallest
unit of data to be recovered. The process of recovering a
unit includes reloading pages belonging to the unit from
AM to MM and processing all the log records associated
with it. No access is allowed to a unit during the course of
its recovery, Reload Priority indicates which data will be
reloaded first and which data will be reloaded next. Re-

load Threshold specifies the amount of database that must
be memory-resident before the system can be brought up.

4. Data Priority Reload Algorithm

The main features of the proposed reload algorithm
include 1) the system is brought on-line before the entire
database is reloaded into MM in order to reduce down
time; 2) transaction execution priorities are taken into
account during the reload process to give immediate at-
tention to high priority transactions so that they have
more opportunities to meet their deadlines and 3) data
accessed frequently are refoaded before other data so that
the number of page faults can be reduced and transaction
execution can be processed with fewer interruptions. 4)
Temporal data are given a higher reload priority than
persistent data so that many temporal data can be used
before losing their validity; this will reduce the number of
transactions aborted due to invalid data access and in turn
improve the system performance in terms of transactions
and data meeting timing constraints

In the following subsections, we first introduce the AM
structure required by the data priority reload algorithm,
and then give a detailed description of the algorithm.

4.1. AM Structure

To facilitate the reload process,.the disk striping tech-
nique [2], which distributes data transparently over mul-
tiple disks to make them appear as a single fast and large
disk, is used. Each disk is divided into two areas: system
cylinders and user data cylinders. The system data cylin-
ders start from cylinder 1 on each disk and store all the
system information such as data dictionary and address
translation table, following these cylinders are user data
cylinders in which the backup copy of the MMDB resides.
As in the data priority reload algorithm, temporal data are
assigned with higher reload priorities than persistent data,
and within each data type, pages with high access fre-
quencies are reloaded into MM before those of low access
frequencies. To facilitate the reload process, the AM is
structured in such a way that temporal data .are stored
first, and then followed by persistent data. Within each
data type, pages are placed based on the decreasing order
of access trequency. Except for the case of demand reload,
the algorithm ensures that, within each disk, lower num-
bered cylinders are reloaded before higher numbered cyl-
inders. This means that more frequently accessed pages
are brought into MM before less frequently accessed
pages, and temporal data will be reloaded into- MM before
persistent data. v

98

4.2, Algorithm

In detail, this algorithm consists of the following steps:
L.

2.

Construct the recovery buffer and recovery
bit map. This step will be explained later.
Reload system pages into MM on a cylinder
basis (Performed by RP).

Reload the rest of the database based on the

following prioritization .until the reload

threshold is reached:

a) Priority 1 (higher reload priority): The
RP reloads temporal data according to
their access frequencies on a cylinder
basis. The highest access frequency page
is reloaded before the second highest ac-
cess frequency page and so on. After a
page is brought into MM, the DP checks
the status (clean or dirty) of the page by
using the recovery bit map. A page is
considered to be clean if it is not modi-
fied since the last complete local check-
point; otherwise, it is dirty. If a page is
found to be dirty, its corresponding log
records that are organized in Step 1 are
applied to the page to bring it up to its
state preceding the crash.

b) Priority 2 (lower reload priority): The
RP reloads persistent data according to
their access frequencies on a cylinder
basis. The data page which has a higher
access frequency will be reloaded into
MM before that with a lower access fre-
quency. The status of the reloaded page
is checked by DP after it is brought into
MM and a recovery action similar to
that described in Step 3.a will be taken
if the page is dirty.

~ Bring the system up when. the reload

threshold is reached.

Reload the rest of the database based on the

following prioritization until the entire data-

base is memory-resident. The status. of each

page is checked after it is brought into MM,

and log records-associated with the page are

applied to it (Performed by RP):

a) Demand reload priority (highest prior-
ity): Demand reload based on transac-
tion execution priority. When ‘a page
fault occurs, the execution of the re-
questing transaction is suspended until
the needed page is brought into MM and
log records (if any) associated with this
page are applied to it in MM. In this

step, reloading is performed on a page
basis.

b) Prefetch reload priority 1: Reload tem-
poral data according to the decreasing
order of their access frequencies on a
cylinder basis.

c) Prefetch reload priority 2 (lowest prior-

ity): Reload persistent data according to
the decreasing order of their access fre-
quencies on a cylinder basis.

Note that prefetch reload is performed on a cylinder
basis while demand reload is on a page basis. It is desired
that database reloading can be finished in the shortest
amount of time while at the same time incurring less
overhead on normal processing. As pages stored on a
cylinder can be reloaded sequentially in a minimal
amount of time, cylinder is thus selected to be the reload
granularity for prefetch reload. However, when a page
fault occurs, in order to bring the requested page into MM
as quickly as possible so that the requesting transaction
can proceed without too much delay, page reload granu-
larity is used.

Another point needs to be noticed is that in this algo-
rithm, temporal data are given higher reload. priorities
than persistent. data. This can be explained as follows.
When a page fault occurs, if it is a persistent data page,
the requesting transaction can perform its execution after
the needed page is brought into MM. However, if it is a
temporal data page, transaction execution may not be able
to proceed even though the requested data page is brought
into MM. This is because we assume that a transaction
will be aborted if a temporal data item which the transac-
tion accesses is out of date. As a temporal data page tends
to become invalid after the system is resumed from a fail-
ure, if it is not updated immediately, there is a very high
chance that it will lose its validity after it is reloaded into
MM by the requesting transaction. This will results in an
abortion of the requesting transaction. Thus, reloading a
certain amount of temporal data into MM before resuming
transaction execution might improve the overall system
performance.

As transaction execution can proceed when needed
pages are memory-resident and recovered, it is possible
that in the log buffers, the log information of pages which
have not been reloaded will be mixed together with the
log information generated by executing transactions
which arrive after the system is brought on-line. To avoid
an incorrect recovery, the recovery bit map and recovery
buffer need to be constructed before reload starts. The
recovery bit map indicates whether a page is dirty or has
been modified since the last checkpoint and needs to be
recovered before being accessed by transactions. Each bit

99

in the recovery bit map corresponds to a page in MMDB.
The recovery buffer maintains the corresponding recovery
information for the above dirty pages and is stored in the
non-volatile memory. In order to efficiently recover each
page, log records associated with the same page are
grouped together in the recovery buffer.

5. Simulation Model and Methodology

In order to measure the performance of the proposed
reload algorithm, we developed a simulation model of a
centralized real-time MMDB system and performed ex-
tensive experiments. Only firm deadline transactions,
which are discarded if they are not completed by their
deadlines, are considered in the model. The earliest
deadline policy [1] is selected for transaction execution
priority assignment. This policy gives a transaction that
has the earliest deadline the highest execution priority. If
two transactions have the same deadline, the transaction
which arrives at the system earlier is considered to have a
higher execution priority. The “conditional restart” using
the 2-phase locking concurrency control mechanism [1] is
adopted in our simulation. For simplicity, we assume that
when a transaction enters the system, before it can be
processed, it must obtain all needed locks on pages it is
going to access. At its commit time, the transaction re-
leases all its locks.

The parameters used to specify the system configuration
and workload are derived based on the DEC 3000 Model
400/400S AXP Alpha workstations [3] and Micropolis
22000 disk drivers [12], since they accommodate high
performance applications. The detailed explanation about
parameter settings can be found in [10].The performance
metric used here is the percent of transactions missing
deadlines after a crash, which is observed from the time at
which the system goes down until the end of a simulation
run. A reload algorithm (referred to as the conventional
approach in this paper), which brings the system on-line
when the entire database is memory-resident and all the
log information is processed, is used to compare with out
proposed reload techniques.

There are two types of transactions in the system: aperi-
odic and periodic. Aperiodic transactions or normal
transactions are generated using an exponential distribu-
tion stream at a specified mean rate. Each normal trans-
action submitted to the system is associated with its crea-
tion time, transaction identitier, transaction size, opera-
tions, pages on which operations are performed, deadline
and execution priority. Periodic transactions are write-
only transactions. Each periodic transaction is responsible
for updating one temporal data page and is invoked at the
beginning of its update period. The time interval during
which a periodic transaction is triggered in order to

maintain the absolute temporal consistency is called up-
date period. The update period of a periodic transaction is
defined to be half of the corresponding temporal data’s
valid interval. The deadline of a periodic transaction is
assumed to be the end of its update period.

If a normal transaction is found to read an invalid tem-
poral data page, in order to give a chance to the periodic
transaction which is responsible for updating the temporal
data page, the normal transaction will be aborted and re-
leases all its locks. If the normal transaction still has a
feasible deadline, it will be scheduled to restart later; oth-
erwise, it is discarded.

Except in the testing case which examines the effects of
the system failure rate on the proposed reload scheme, in
all other testing cases a system crash is assumed to take
place once at the time when half of the specified normal
transactions are finished (committed or aborted). When a
system failure occurs, all resources are made inactive, and
all active transactions are kept in a file so that they can be
restarted later. The MM is emptied to simulate its volatil-
ity. Transaction execution is resumed when the reload
threshold is reached. The rest of the database is reloaded
into MM by demand or prefetch reload in parallel with
normal transaction processing. The simulation model is
written using the simulation language SLAM II [13]. In
each simulation experiment at least 10,000 normal trans-
actions are executed for all the reload algorithms. The
final results are obtained by averaging the results over 20
independent runs. 95% confidence levels are obtained for
the performance results. The width of the confidence in-
terval of each data point is within 5% of the point esti-
mate.

6. Simulation Results

Totally, five testing cases, varying transaction arrival
rate, varying database size, varying reload threshold,
varying percent of temporal -data and varying system fail-
ure rate, are performed. The results obtained are high-
lighted as follows. The data priority reload algorithm, in
most cases, offers a better overall system performance in
terms of transactions and data meeting timing constraints
than the conventional reload approach.

Whether the efficiency of different reload algorithms is
crucial to the overall system performance mainly depends
on system load, database size and system failure rate. As
shown in Figure 1, the higher the transaction arrival rate
is, the more important the performance of the reload al-
gorithm becomes. This is because the number of transac-
tions that are backlogged when a system failure occurs is
increased as the arrival rate is increased. If transaction
processing cannot be resumed quickly, many transactions
and data may miss their timing constraints. An efficient

100

reload algorithm is also ‘desired when the database size
becomes large. As for a large database, simply reloading
the entire database into MM will take a great amount of
time, many transactions may miss their deadlines due to
this delay. In this case, the time at which the system op-
eration can be resumed and how efficiently pages re-
quested by high priority transactions can be brought into
MM becomes a crucial factor to the overall system per-
formance. The results obtained also show that the higher
the system failure rate is , the more important choosing an
efficient reload algorithm becomes.

The key factors of the design of a real-time MMDB
reload technique are system unavailability, reload priority,
transaction execution priority and reload threshold. In
order to achieve a good recovery performance, the de-
crease in system unavailability is more important than the
decrease in database reload time. Even though the con-
ventional reload approach can finish database reloading in
the shortest amount of time, as transaction processing is
delayed for a long time compared with that in the pro-
posed reload scheme, it finally results in the worst per-
formance. To reduce the amount of invalid data and the
number of transactions aborted due to invalid data access,
temporal data of short valid intervals should be reloaded
into MM as quickly as possible. In addition, pages needed
by high execution priority transactions should be given
higher reload priority so that the execution of these trans-
actions will not be suspended too long. The results ob-
tained indicate that taking transaction’s execution priority
into account during database reloading can reduce the
number of transactions missing deadlines. Reloading most
frequently access pages before other data also helps reduce
the number of page faults, which in turn hastens transac-
tion processing. To take advantage of data priority reload,
the reload threshold must be selected carefully and should
not be a small number. As plotted in Figure 2, the loss in
the system performance when choosing a too large reload
threshold is much less than the loss when choosing a too
small reload threshold.

7. Conclusions

In this paper we presented a data priority reload tech-
nique for a real-time MMDB system. This algorithm en-
ables database reloading and transaction processing to be
performed in parallel, which reduces system unavailability
and enhances the overall performance. This algorithm
takes transaction execution priority, reload priority and
preemption, data characteristics such as temporality and
access frequency into account during the reload process. It
reduces the amount of invalid temporal data and the num-
ber of transactions aborted due to invalid data access and
enables higher priority transactions to be given immediate

attention so that they have more chances to meet their
deadlines. The simulation results obtained show that 1)
the proposed reload algorithm has a potential to offer a
better performance than the conventional approach; 2) the
selection of an efficient reload becomes more critical un-
der the environment in which the system load is high, the
database size is large or the system failure occurs fre-
quently; 3) the key factors to the design of a real-time
MMDB reload scheme are system unavailability, transac-
tion execution priority, reload priority and reload thresh-
old.

60
50
40
30
20
10

0 f t } +— .

40 50 70 80 90

—&— conventional
——data

% transactions missing
deadlines after crash

transaction arrival rate (transactions/second)

Figure 1. Transaction Arrival Rate vs. % Transactions
Missing Deadlines After Crash

a0 70 +
2 = >
22 60 ,
Z g —&— conventional
By —3— data
=
o <
93
ol
g g
&Q"U
0 e e
— @ 0 < o N
S o o O o S °o o o
reload threshold

Figure 2. Reload Threshold vs. % Transactions
Missing Deadlines After Crash

References

[11 R. Abbott, H. Garcia-Molina, “Scheduling Real-Time
Transactions: A Performance Evaluation”, ACM Transac-
tion on Database Systems, Vol. 19, No. 3, September 1992,
pp. 513-560.

P. M. Chen, etc:, “RAID: High-Performance, Reliable Sec-
ondary Storage”, ACM Computing Surveys. Vol. 26, No. 2,
June 1994,

(2]

101

(3]
[4]

DECdirect Workgroup Solutions Catalog, Winter 1993.

J. Gray, etc., "The 5 Minute Rule for Trading Memory for

Disk Accesses And the 10 Byte Rule for Trading Memory

for CPU Time", Proceedings of 1987 ACM SIGMOD Con-

ference, San Francisco, CA, May 1987, pp. 395-398.

J. Gray, A. Reuter, “Transaction Processing: Concepts and

Techniques”, Morgan Kaugmann Publishers, Inc. 1993.

L. Gruenwald, M. H. Eich, “MMDB Reload Algorithm”,

Proceedings of ACM SIGMOD International Conference on

Management of Data, May 1991, pp. 397-405.

S. Gukal, E. Omiecinski, U. Ramachandran, “L.U Logging -

An Efficient Transaction Recovery Method”, Technical Re-

port GIT-CC-93, College of Computing, Georgia Institute

of Technology, 1993.

R. B. Hagmann, "A Crash Recovery Scheme for a Memory-

Resident Database System", IEEE Transactions on Com-

puters, Vol. C-35, No. 9, Sept. 1986.

J. Huang, L. Gruenwald, “Logging Real-Time Main Mem-

ory Databases”, Proceedings of International Computer

Symposium, December 1994, pp. 1291-1296.

[10] J. Huang, L. Gruenwald, “Real-Time MMDB Reloading
Techniques”, Technical Report, School of Computer Sci-
ence, University of Oklahoma, October 1995,

[11] X. Li, M. H. Eich, “Partition Checkpointing in Main Mem-
ory Databases”, Technical Report, 93-CSE-23, Department
of Computer Science and Engineering, South Methodist
University, 1993,

[12] 22000 Series - SCSI Micropolis Disk Drive Information,
1993.

[13] A. Alen B. Pritsker, “Introduction of Simulation and SLAM
11, John Wiley & Sons, Inc., New York, 1986.

[14] K. Ramamritham, "Real-Time Database", Invited Paper in

International Journal of Distributed and Parallel Database,

Vol. 1, No. 2, 1993, pp. 199-226. -

B3]
(6]

(7]

(8]

(9]

