
An Update-Frequency-Valid-Interval Partition Checkpoint Technique
for Real-Time Main Memory Databases†

Jing Huang Le Gruenwald

School of Computer Science
University of Oklahoma

Norman, OK 73019

† This material is based in part upon work supported by National Science Foundation under Grant No. IRI-
9201596.

Abstract In this paper, we propose a checkpoint
technique for real-time main memory database
(MMDB) systems which aims at not only reducing
the system recovery time, but also increasing the
percent of transactions meeting their deadlines and
enabling as many temporal data as possible to be
used before losing their validity. The main idea of
this approach is to divide the MMDB into partitions
based on data types (persistent vs. temporal), update
frequencies and temporal valid intervals, and check-
point each partition independently based on its up-
date frequency and temporal valid interval. Our
simulation results show that the proposed scheme
offers a significant performance improvement over
the conventional fuzzy checkpoint approach, and the
key factors in the design of a real-time MMDB
checkpoint technique include how the MMDB is
partitioned, whether temporal data of short valid
intervals are checkpointed and how the checkpoints
among partitions are scheduled.

1. Introduction

A real-time database system (RTDBS) is the one
in which transactions must not only maintain the
consistency constraints of the database but also sat-
isfy their timing constraints (such as deadlines). In
addition to transaction deadlines, an RTDBS often
involves processing both temporal data which lose
their validity after a certain period of time, as well as
persistent data which remain valid regardless of time
([13], [14]). The main goal of an RTDBS is to meet
the timing constraints of transactions and data.

During the last few years, a great number of
researchers have been attracted to real-time database
systems, and many related areas such as transaction
scheduling, concurrency control and I/O scheduling
have been extensively studied. However, little re-
search has been done on checkpointing. Checkpoint-
ing is a process used to maintain on disks an up-to-

date copy of the database and thereby provides a
starting point for log recovery. When a system fail-
ure occurs, as checkpoints provide an almost up-to-
date copy of the database, most data in the log are
not needed. The recovery procedure only needs to
process the log records generated after the last com-
plete checkpoint. The efficiency of the checkpoint
technique therefore has an important effect on the
performance of database recovery, especially in a
main memory database (MMDB) environment in
which all or a major portion of the database can be
memory-resident. As I/O activities are kept at mini-
mum, transaction processing can be processed with
little interference. It is obvious that the use of
MMDBs has a potential for obtaining a substantial
performance improvement over a disk-resident data-
base system for real-time applications. However, due
to the timing constraints imposed on both transac-
tions and data in real-time systems, and the vulner-
ability to failures of MMDBs, checkpoint issues need
to be re-explored or re-designed in such a new envi-
ronment.

In this paper, an update-frequency-valid-
interval partition checkpoint (UFVIPC) scheme is
proposed for real-time MMDB system. Simulation
experiments are conducted to measure the perform-
ance of the proposed checkpoint scheme. The re-
mainder of this paper is organized as follows. Sec-
tion 2 describes the media organization required by
the UFVIPC scheme. Section 3 gives a detailed de-
scription of the proposed scheme. The simulation
model and methodology are introduced in Section 4.
Performance experiments and results are presented
in Section 5. Lastly, Section 6 concludes the paper.

2. Media Organization Required by the
UFVIPC Scheme

Before describing the UFVIPC scheme, this sec-
tion introduces the media organization required by

the proposed partition checkpoint scheme. As shown
in Figure 1, an MMDB, which resides in the volatile
main memory (MM), is divided into partitions and
each of which consists of a page or a set of pages.
Temporal data are partitioned based on their tempo-
ral valid intervals and persistent data are partitioned
based on their update frequencies. Pages which be-
long to one partition are not necessarily placed next
to each other in MM, but are linked together so that
they can be located easily during the checkpoint
process. In the UFVIPC scheme, it is assumed that
persistent data pages are linked together in MM ac-
cording to the decreasing order of update frequencies
while temporal data pages are linked in MM based
on the increasing order of valid intervals. Partitions
may or may not be of the same size. Note that in
Figure 1, v(Pi) stands for the valid interval value of
page Pi and f(Pi) the update frequency of page Pi.

Due to the volatility of semiconductor memory,
the backup copy of the MMDB is kept in an archive
memory (AM) residing on secondary storage. The
database on AM is updated only when a checkpoint
is taken. Fuzzy checkpointing [5], which copies the
database from MM to AM periodically, is assumed
in this work. As this technique does not require the
system to be quiescent during its execution, it offers
a higher system performance for a real-time MMDB
system than consistent checkpointing does.

In order to facilitate database recovery, each
partition is associated with a local checkpoint bit

map and a local log buffer residing on the non-
volatile memory. Local checkpoint bit maps are used
to assist the implementation of fuzzy checkpoint. A
bit in a local checkpoint bit map corresponds to a
page in its associated partition and indicates whether
the page has been modified (or dirty) since the last
local checkpoint. Note that a checkpoint performed
on a partition is referred to as local checkpoint. Only
the modified pages will be flushed out from MM to
AM during the checkpoint process.

Log records generated during normal processing
are grouped according to partitions and stored in the
corresponding local log buffers. Based on our previ-
ous studies [4], when being combined with deferred
update, the logging scheme, which logs both valid
and invalid temporal data, and maintains persistent
data and temporal data log records separately, gives
the best performance in terms of logging space,
number of memory references and cost to perform
log processing. This technique is thus used to handle
logging in this work. We assume that log buffers are
large enough to contain all updates of active trans-
actions. When a log buffer is full, its contents will be
flushed to a log disk. One benefit of using local log
buffers is that they permit partitions to be recovered
independently after a system crash, thus transactions
can start executing before all partitions are recov-
ered, and partitions can be recovered on demand.

checkpoint
bit map

local
log buffer

checkpoint
bit map

checkpoint
bit map

........

checkpoint
bit map

local
log buffer

local
log buffer

local
log buffer

........

Main Memory
(MMDB)

Nonvolatile
Memory

global checkpoint record

local
log

local
log

local
log

local
log

local
log

AM AMAM

transaction information

P1 P2 P3 P4 P5
........

PnP5 Pn-1Pk Pk+1 Pk+2

partition 1 partition 2 partition j partition k

temporal data pages persistent data pages

v(P1) < v(P2) <v(P3)< ... f(Pk) > f(Pk+1) > ... > f(Pn)

Figure 1. Media Organization Required by the UFVIPC Scheme

In order to fasten the recovery process, a trans-
action abort list is maintained in the non-volatile
memory during normal processing. At the time of
database recovery, by making use of this table, the
fate of each transaction in the log can be decided.
The global checkpoint record is used to record the
location of the last complete local begin checkpoint
record for each partition, which provides the start
point for post-crash log processing. The global
checkpoint record is updated when each checkpoint
invoked on a partition is completed.

Two processors, Database Processor (DP) and a
Recovery Processor (RP), are assumed in the system
and they are running in parallel. The DP handles
normal transaction execution while the RP manages
transaction termination, logging, checkpointing and
recovery from a system failure.

3. Update-Frequency-Valid-Interval Par-
tition Checkpoint (UFVIPC) Scheme

The motivation of the UFVIPC scheme is to take
advantage of hot spots [12] (parts of the database
that are accessed frequently) and make use of the
timing constraint information associated with data so
that the checkpoint performance can be improved.
The main features of the UFVIPC algorithm include
1) temporal data are partitioned based on valid inter-
vals while persistent data are partitioned based on
update frequencies; 2) partitions with higher update
frequencies (hot partitions) are checkpointed more
often than those of lower update frequencies so that
the log information that needs to be processed for hot
partitions can be reduced and the overall recovery
time is minimized; 3) temporal data partitions with
short valid intervals are given more opportunities to
be flushed out by increasing their update frequencies
than other partitions, this enables many temporal
data to be recovered and used before losing their
validity and in turn reduces the number of transac-
tion aborted or delayed due to invalid data access;
and 4) no logging and checkpointing will be invoked
on temporal data whose valid intervals are shorter
than the specified interval threshold, this not only
reduces the interference of logging and checkpoint-
ing activities on normal operations but also hastens
the recovery process.

The idea of partition checkpoint was also pro-
posed in ([8], [9]); however, not like ours, neither
transaction deadlines nor temporal consistency re-
quirements were considered in their schemes. In the
following subsections, we first introduce how the
update frequency of temporal data partitions is in-

creased, how the checkpoint frequency of a partition
is assigned and then give the detailed description of
the UFVIPC scheme.

3.1. Increasing Update Frequencies for
Temporal Data Partitions

In order to enable temporal data of short valid
intervals to be checkpointed more frequently than
persistent data partitions, the UFVIPC scheme in-
creases update frequency of each temporal data par-
tition i by using the following formula:

 
UFi AUFi

Lt LP

Vi

Vthreshold

= − +
















*
()1

where UFi represents the increased update frequency
of the partition i, AUFi the actual update frequency
of a temporal data partition i, which is the sum of
update frequencies of all pages in partition i, Vi the
valid interval of the temporal data partition i, which
is the shortest valid interval among all pages in
partition i and Vthreshold the interval threshold selected
by the system, Lt and Lp the log record size of tempo-
ral data and persistent data, respectively. Note that
Lt>Lp and Vi≥Vthreshold. always hold in the above for-
mula, the item in the ceiling function specifies the
amount by which the actual update frequency of each
temporal data partition is increased. This amount is
decreased from (Lt-Lp+1) to 1 as the temporal valid
interval Vi of partition i is increased. The shorter
temporal valid interval a partition has, the larger
increase the partition’s update frequency is given.
This is because the shorter a partition’s temporal
valid interval is, the more frequently the partition
will be updated, the more log records will be accu-
mulated in the corresponding local log buffer. It is
therefore desired that partitions with short temporal
valid intervals are checkpointed as frequently as
possible so that less log information needs to be ex-
amined for recovery. However, in order to avoid
persistent data partitions being ignored for a long
time during the checkpoint process, the amount of
increase in update frequencies of temporal data par-
titions is decreased as the temporal valid interval of a
partition is increased. Since, otherwise, too many log
records will be accumulated on persistent data parti-
tions, the overall performance may be degraded. The
detailed explanations of the above formula can be
found in [7].

3.2. Assigning Checkpoint Frequency

In order to enable partitions with a high update
frequency to be checkpointed more frequently, the
checkpoint frequency of each partition is assigned in
such a way that the higher the update frequency of a
partition is, the higher checkpoint frequency the
partition has. Let CFi be the checkpoint frequency of
a partition i, and Npart be the number of partitions the
database has. The CFi of the partition i can be de-
cided based on its UFi as follows:

CF UF * Ni i part=
=























∑UF
i

N
i

part

1

The objective of the above formula is to guarantee
that if UFi>UFj, then CFi>CFj. Besides, the value of
CFi should reflect the relative update frequency of
partition i and enable each partition to be check-
pointed at least once in a limited period of time. The

first item, UFi UFi
i

Npart

=
∑

1
, represents the relative up-

date frequency of a partition i among all partitions.
The second item, Npart, is used to calculate the
checkpoint frequency of the corresponding partition.
Note that if CFi is assigned to be UFi, although it
can reflect the relative update frequency order
among partitions, as UFi is usually a large number,
it is not easy to schedule checkpoints so that fre-
quently updated partitions can be given more atten-
tion and at the same time other partitions are not
ignored for a too long time. The ceiling function
used here guarantees that each partition will be
checkpointed at least once. This avoids the starvation
problem in which some partitions may never have a
chance to be checkpointed.

3.3. The Algorithm

In detail, the UFVIPC algorithm consists of the
following steps:
1. Partition persistent data based on their update

frequencies.
2. Partition temporal data whose valid intervals

are longer than the interval threshold based on
their valid intervals. For temporal data of
valid intervals shorter than the interval
threshold, no logging and checkpointing proc-
ess will be incurred on them.

3. Let AUFi and UFi be the actual update fre-
quency and the increased update frequency of
each partition, respectively. For a persistent
data partition j, UFj=AUFj. For a temporal
data partition i, the UFi is calculated by using

the following formula:

 
UFi AUFi Vi

Vthreshold

= − +











* (Lt Lp 1) .

4. Set the checkpoint frequency CFi of each
partition i (1 ≤ ≤i Npart) based on its update
frequency UFi as follows:

 CFi UFi * Npart=
=
∑















UFi

i

Npart

1
.

5. Find a partition i which has the highest
checkpoint frequency among Npart partitions,
that is

 CFi >= CFj, j =1, 2, ... , i-1, i+1, ..., Npart

6. Perform a local checkpoint on partition i.
7. Set CFi = CFi -1.
8. If there exists a partition i such that CFi > 0,

goto Step 5; Otherwise, goto step 9.
9. Reset the checkpoint frequencies CFi’s for all

partitions i’s to their original checkpoint fre-
quencies and goto Step 5.

Note that Step 6 invokes a local checkpoint on parti-
tion i, which is performed as follows:

1. write a BC (Begin Checkpoint) record into the
local log buffer of partition i.

2. save the location of the BC record in the
global checkpoint record

3. While there is an unchecked page in the par-
tition i Do

 If the page is dirty Then
 reset the corresponding bit in the local

checkpoint bit map of partition i to 0.
 copy the page to the IO buffer.
 request IO to flush this page to the AM

 end of If
 end of While
4. write an EC (End Checkpoint) record in the

local log buffer of partition i.
5. record the location of the last complete local

checkpoint in the global checkpoint record

As transaction execution cannot proceed until
requested pages are brought into MM, interval
threshold can be decided based on reload granularity,
which is the smallest unit of data to be reloaded
without preemption used by the system at recovery
time. As a cylinder is selected to be the reload
granularity in this study, the value of interval
threshold is defined to be the time needed to reload
an entire cylinder from AM to MM.

4. Simulation Model and Methodology

In order to measure the performance of the pro-
posed checkpoint algorithm, we developed a simula-
tion model of a centralized real-time MMDB system
and performed extensive experiments. Only firm
deadline transactions, which are discarded if they are
not completed by their deadlines, are considered in
the model. The earliest deadline policy [1] is se-
lected for transaction execution priority assignment.
This policy gives a transaction that has the earliest
deadline the highest execution priority. If two trans-
actions have the same deadline, the transaction
which arrives at the system earlier is considered to
have a higher execution priority. The “conditional
restart” using the 2-phase locking concurrency con-
trol mechanism [1] is adopted in our simulation. For
simplicity, we assume that when a transaction enters
the system, before it can be processed, it must obtain
all needed locks on pages it is going to access. At its
commit time, the transaction releases all its locks.

The parameters used to specify the system con-
figuration and workload are summarized in Tables 1
and 2. All the parameter values are derived based on
the DEC 3000 Model 400/400S AXP Alpha work-
stations [4] and Micropolis 22000 disk drivers [10],
since they accommodate high performance applica-
tions. The parameter db_size corresponds to the
number of data pages stored in the database. Trans-
action arrivals are assumed to be exponentially dis-
tributed with the mean value of arrival_rate. To pre-
vent the possibility of transaction overload in the
system, the total number of active transactions in the
system is limited by the parameter max_mpl [15].
The number of data objects accessed by a transaction
is determined by the parameter trans_size, which is
uniformly distributed between 5 and 20 [2]. Page
accesses are exponentially distributed across the
whole database. For each data access of a normal
transaction, the probability that the accessed data
object will be updated is determined by the parame-
ter prob_write [15]. The type of the accessed data
object is decided based on the parameter
per_temporal. Temporal data valid intervals are
uniformly distributed within the range specified by
min_interval and max_interval. slack_factor is used
in assigning new transaction deadlines [15].

The CPU power, memory access time and word
size are chosen based on the DEC 3000 model ma-
chine [4]. The parameters pre_trans and pre_op de-
note the CPU costs to preprocess a transaction (e.g.,
allocating and initializing needed lock tables, log-
ging “begin transaction”) and an operation (e.g.,
fetching one instruction), respectively. sm_access

indicates the time required to perform a read or write
on the non-volatile memory or stable memory (SM).
In [4], SM access time is assumed to be 10% slower
than memory access time to account for the possible
use of BBRAM to make the SM nonvolatile. Disk
parameters are chosen based on 2200 series-SCSI
Micropolis disks [10]. The average disk transfer time
is 0.128 milliseconds for 1024 bytes. Since the 2-
phase locking concurrency control protocol is used
and each transaction performs operations on pages, a
page-level lock granularity is chosen. The time to
lock and unlock operations are represented by pa-
rameters lock_time and unlock_time, which together
with the time to allocate or release a main memory
page, and the time to request a disk I/O is estimated
based on the number of instructions that are needed
in order to perform the corresponding task and DEC
3000 model machines. As a cylinder is assumed to
be the reload granularity for prefetch reload, interval
threshold is therefore chosen to be the time required
to reload the entire cylinder.

Based on whether transactions can update tem-
poral data, we classify transactions into two groups:
aperiodic transactions and periodic transactions.
Aperiodic transactions or normal transactions are
generated using an exponential distribution stream at
a specified mean rate. Each normal transaction
submitted to the system is associated with its crea-
tion time, transaction identifier, transaction size,
operations, pages on which operations are per-
formed, deadline and execution priority. Periodic
transactions are write-only transactions. Each peri-
odic transaction is responsible for updating one tem-
poral data page and is invoked at the beginning of its
update period. The time interval during which a pe-
riodic transaction is triggered in order to maintain
the absolute temporal consistency is called update
period. The update period of a periodic transaction is
defined to be half of the corresponding temporal
data’s valid interval. The deadline of a periodic
transaction is assumed to be the end of its update
period.

If a normal transaction is found to read an inva-
lid temporal data page, in order to give a chance to
the periodic transaction which is responsible for up-
dating the temporal data page, the normal transac-
tion will be aborted and release all its locks. If the
normal transaction still has a feasible deadline, it
will be scheduled to restart later; otherwise, it is dis-
carded.

The performance metric used here is the percent
of transactions missing deadlines, which is observed
from the beginning of a simulation run until the end

of the simulation. The conventional fuzzy checkpoint
approach is chosen as a comparison.

Except in the testing case which examines the
effects of the system failure rate on the proposed
checkpoint scheme, in all other testing cases a sys-
tem crash is assumed to take place once at the time
when half of the specified normal transactions are
finished (committed or aborted). When a system
failure occurs, all resources are made inactive, and
all active transactions are kept in a file so that they
can be restarted later. The MM is emptied to simu-

late its volatility. Transaction execution is resumed
when the entire database is reloaded in MM and re-
covered. The simulation model is written using the
simulation language SLAM II [11]. In each simula-
tion experiment at least 20,000 normal transactions
are executed. The final results are obtained by aver-
aging the results over 20 independent runs. 95%
confidence levels are obtained for the performance
results. The width of the confidence interval of each
data point is within 5% of the point estimate.

Parameter Meaning Default Value Range
db_size database size 900 pages 600 --- 2100
prob_write probability of write 40% 0% --- 100%
prob_read probability of read 60% 100% - prob_write
num_parts number of partitions 10 2 --- 15
per_temporal percent of temporal data 40% 0% --- 100%
per_persist percent of persistent data 60% 100% - per_temporal
min_interval minimum temporal valid interval 40 ms 40 --- 3000
max_interval maximum temporal valid interval 1500 ms 40 --- 3000
slack_factor slack factor 5 5 --- 20
arrival_rate transaction arrival rate 200 transactions/second 50 --- 350

Table 1. Dynamic Parameters

Parameter Meaning Default Value
max_mpl multiple programming 10
trans_size transaction size 10 operations
pg_size page size 23476 bytes
alloc/releas_tm allocate/release a main memory page 0.005 ms
am_req_tm request a write/read to/from archive disk 0.00143 ms
pre_trans preprocess 1 transaction 0.0072 ms
pre_op preprocess 1 operation 0.000007 ms
bmap_tm read bit map time 0.02957 ms
sm_access stable memory access time per word 0.000198 ms
et_tm end transaction 0.0054 ms
mm_access main memory access time per word 0.00018 ms
int_io_tm initialize log I/O time 0.0014 ms
log_io_tm write a log page to disk 5.624
word_sz number of bytes per word 8
per_word words per persistent data log record 4
tem_word words per temporal data log record 6
seek_tm average seek time 10 ms
latency_tm average latency time 5.56 ms
transfer_tm time to transfer 1 data page 0.064 ms
am_disk number of AM disks 2
log_pg_sz log page size 2000 bytes
lock_tm get one lock (one try) 0.0007 ms
unlock_tm release one lock 0.0007 ms
interval_threshold interval threshold is the time required to reload the entire cylinder 97 ms
cpu_power CPU(DP and RP) power 140 MIPS

Table 2. Static Parameters

5. Simulation Results

Based on the simulation results obtained, the
following conclusions are drawn: the UFVIPC
scheme offers better overall performance than the
conventional fuzzy checkpoint approach does. The
key factors (summarized in Table 3) that affect the
performance of the proposed partition checkpoint
scheme are how many partitions the database has,
whether the temporal data of short valid intervals is
checkpointed and how the checkpoints among parti-
tions are scheduled. Our results show that the more
partitions the database has, the more performance
improvement the system tends to obtain (shown in
Figure 2, where UFVIPCi means an MMDB is di-
vided into i partitions). However, UFVIPC does im-
pose an overhead on normal system operations, and
the more partitions the database has, the more over-
head it incurs. When the number of partitions
reaches a certain limit, the benefit obtained from
further partitioning is not very significant. Not log-
ging and checkpointing temporal data whose valid

intervals are shorter than the interval threshold does
help to improve the overall performance. This is
especially true when most of temporal data valid
intervals are short as plotted in Figure 3 and the
system has a great amount of temporal data. The
results also indicate that giving temporal data parti-
tions, especially those of short valid intervals, more
chances to be flushed to AM is desired, which re-
duces the amount of log information that needs to be
processed at recovery time.

The performance improvement offered by
UFVIPC is lessened when the transaction arrival rate
or the system failure rate increases, as shown in Fig-
ures 4 and 5, respectively. This is because as the
transaction arrival rate or system failure rate gets
higher, the number of transactions that are back-
logged during a system crash increases tremen-
dously. The savings obtained from reducing post-
crash log processing time, therefore, becomes less
significant compared to those obtained in a system of
a low system load and a low failure rate.

Design
factor

Importance Expected
value

Reason

number of partitions yes high
• less time is needed to finish a local checkpoint
• less log information needs to be examined for recovery

not logging and check-
pointing temporal data
of short valid intervals yes

short tem-
poral valid

interval

• reduce logging and checkpointing overhead
• reduce overhead imposed on normal processing
• less log information needs to be processed for recovery

schedule
checkpoints among

partitions
yes

based on
different
priorities

checkpoint temporal data of short valid intervals more often so
that total amount of log information can be reduced for recovery

Table 3. Key Factors in the Design of a Real-Time MMDB Checkpointing Technique

15

20

25

30

35

40

45

50

0.1 0.3 0.5 0.7 0.9

Percent of temporal data

%
 T

ra
ns

ac
tio

ns
 m

is
si

ng
 d

ea
dl

in
es

Conventional
UFVIPC 4
UFVIPC 6
UFVIPC 8
UFVIPC 10
UFVIPC 12

Figure 2. Percent of temporal data vs.
% transactions missing deadlines

10

15

20

25

30

35

40

45

50

55

100 500 1000 1500 2000 2500

Maximum temporal valid interval

%
 T

ra
ns

ac
tio

ns
 m

is
si

ng
 d

ea
dl

in
es Conventional

UFVIPC 10

Figure 3. Maximum valid interval vs.
% transactions missing deadlines

0

5

10

15

20

25

30

35

40

45

100 150 200 250 300 350

Transaction arrival rate (transactions/second)

%
 T

ra
ns

ac
tio

ns
 m

is
si

ng
 d

ea
dl

in
es

Conventional

UFVIPC 10

Figure 4. Transaction arrival rate vs.
% transactions missing deadlines

0

5

10

15

20

25

30

35

40

1 2 3 4

System failure rate

%
 T

ra
ns

ac
tio

ns
 m

is
si

ng
 d

ea
dl

in
es

Conventional

UFVIPC 10

Figure 5. System failure rate vs.
% transactions missing deadlines

6. Conclusions

In this paper, an update-frequency-valid-interval
partition checkpoint (UFVIPC) is proposed for real-
time MMDBs, which aims at not only reducing the
post-crash log processing time but also enabling
many temporal data to be used before losing their
validity. The main features of the UFVIPC scheme
include 1) persistent data are partitioned based on
update frequencies while temporal data are parti-
tioned based on valid intervals; 2) both data timing
constraints information and update frequencies are
taken into account during the scheduling of check-
points; 3) temporal data partitions, especially those
of short valid intervals, are given more opportunities
to be flushed to AM disks than persistent data parti-
tions; and 4) temporal data objects whose valid in-
tervals are shorter than a specified interval threshold
are not logged and checkpointed during the normal
operation. The simulation results show that the pro-
posed scheme outperforms the conventional fuzzy
checkpoint approach.

References

[1] R. Abbott, H. Garcia-Molina, “Scheduling Real-
Time Transactions: A Performance Evaluation”,
ACM Transaction on Database Systems, Vol.
19, No. 3, Sept. 1992, pp. 513-560.

[2] S. Chakravarthy, D. Hong and T. Johnson,
“Real-Time Transaction Scheduling: A Frame-
work for Synthesizing Static and Dynamic Fac-
tors”, University of Florida, Computer and In-
formation sciences, Technical Report, March 14,
1994.

[3] C. H. Corti, M. H. Eich, “Update and Logging
Options in Main Memory Database”, Technical
Report 90-CSE-13, Department of Computer
Science and Engineering, South Methodist Uni-
versity, March 1990.

[4] DECdirect Workgroup Solutions Catalog, Win-
ter 1993.

[5] R. B. Hagmann, "A Crash Recovery Scheme for
a Memory-Resident Database System", IEEE
Transactions on Computers, Vol. C-35, No. 9,
September. 1986.

[6] J. Huang, L. Gruenwald, “Logging Real-Time
Main Memory Databases”, Proceedings of In-
ternational Computer Symposium, December
1994, pp. 1291-1296.

[7] J. Huang, “Recovery Techniques in Real-Time
Main Memory Databases”, Ph. D. Dissertation,
School of Computer Science, the University
Oklahoma, 1995.

[8] H. V. Jagadish, A. Silberschatz, S. Sudarshan,
“Recovering From Main Memory Lapse”, Pro-
ceedings of the 19th VLDB Conference, 1993,
pp. 391-404.

[9] Xi. Li, M. H. Eich, “Partition Checkpointing in
Main Memory Database”, Technical Report 93-
CSE-23, Department of Computer Science and
Engineering, South Methodist University, Dal-
las.

[10]22000 Series - SCSI Micropolis Disk Drive In-
formation, 1993.

[11]A. Alen B. Pritsker, “Introduction of Simulation
and SLAM II”, John Wiley & Sons, Inc., New
York, 1986.

[12]K. Salem, D. Barbara, “Probabilistic Diagnosis
of Hot Spots”, IEEE International Conference
on Data Engineering, 1992, pp. 30-39.

[13]R. M. Sivasankaran, K. Ramamritham, J. A.
Stankovic , D. Towsley, “Data Placement, Log-
ging and Recovery in Real-Time Active Data-
bases”, International Workshop on Active and
Real-Time Database Systems (ARTDB-95), June
9-11, 1995.

[14]S. H. Son, Y. Kim, “Predictability and Consis-
tency in Real-Time Database Systems”, Proceed-
ing of Information Science, 1993.

[15]O. Ulusoy, G. Belford, “Real-Time Transaction
Scheduling in Database Systems”, Information
Systems, Vol. 18, No. 8, 1993, pp. 559-580.

