

Energy-Efficient Data Broadcasting in Mobile Ad-Hoc Networks**

Le Gruenwald, Muhammad Javed, Meng Gu
The University of Oklahoma, School of Computer Science, Norman, OK 73019

** This research is supported in part by National Science Foundation grant No. EIA-9973465

Abstract
 Energy saving is the most important issue in wireless
mobile computing due to power constraints on mobile
units. Data broadcasting is the main method of
information dissemination in wireless networks as its cost
is independent of the number of mobile hosts receiving the
information. A number of data broadcasting techniques
have been proposed for mobile wireless networks, where
servers have no energy restrictions, but little research has
been done to address the issue of data broadcasting in
mobile ad-hoc networks where both servers and clients
are nomadic. In this paper, we propose two groups of
broadcast scheduling algorithms called adaptive
broadcasting and popularity based adaptive broadcasting
that consider time constraints on requests as well as
energy limitation on both servers and clients. We also
present the simulation experiments that compare the
algorithms.

1. Introduction

 In a mobile ad-hoc network (MANET), mobile units
can communicate with each other directly via wireless
links in the absence of a fixed wired infrastructure [6][10].
MANET is different from a wireless mobile network
which usually consists of a static wired part, in which
fixed hosts and base stations are interconnected through a
high speed wired network, and a mobile wireless part, in
which mobile units communicate with the base stations
through wireless connections. A base station can only
communicate with the mobile units moving within its
coverage area called cell. Mobile units can communicate
with each other only through at least one base station.
Mobile units run on batteries while base stations are
supplied by stable system power from static networks. In
MANET, every mobile unit can move freely and
communicate directly with another mobile unit as long as
that mobile unit is in its communication coverage area.

 In a mobile computing environment, bandwidth and
power limitations impose significant restrictions on data
management [8]. These limitations require frequent
disconnection and inspire the need for energy-efficient
data access methods. While research in mobile computing
has received growing interest in recent years due to the
large number of potential applications, research in mobile
ad-hoc network is still in its infancy.
 Data broadcasting is considered as a main method of
information dissemination in mobile wireless networks
and can also be adopted for information distribution in
mobile ad-hoc networks. However, in a MANET
environment, both servers and clients are mobile.
Therefore, energy conservation issues must be considered
in developing broadcasting strategies for both servers and
clients. In this paper, we propose two groups of broadcast
scheduling algorithms for MANET called adaptive
broadcasting and popularity based adaptive broadcasting
which address the issues of client and server energy
limitation and timing constraints on requests. The
performance of the proposed algorithms is analyzed using
simulation.
 This paper is organized as follows. Section 2 reviews
related work. Section 3 describes our architecture.
Sections 4 and 5 present our broadcasting algorithms.
Section 6 analyzes the simulation experiments. Section 7
provides conclusions and future research.

2. Related Work

 The existing studies on data broadcasting are limited
to mobile network environments, where only clients are
nomadic. They attempt to save energy for clients but not
for servers. Below is a brief discussion of the three most
recent data broadcast algorithms for mobile networks.
 Askoy et. al. [1] have presented a large-scale low-
overhead on-demand broadcasting model called RxW
(Requests time Wait). In RxW, at each broadcast tick, the

server chooses an item with the highest value of (R * W)
where R is the number of outstanding requests and W is
the waiting time for the first request. The entry for this
data item is then removed from the queue that keeps track
of the number of requests and earliest request time for
data. The algorithm makes no assumptions regarding
access probabilities of data items. However, the size of the
queue is equal to the size of the database, therefore, large
databases will require a significant overhead in terms of
time to find the highest value of R * W and space to store
frequency and time.
 Xuan et. al. [16] have proposed two on demand
broadcast scheduling strategies, which consider deadlines
attached to requests to decide the next item to be
broadcast. In the first strategy, the server always
broadcasts a request with the earliest deadline first (EDF)
and every request is scheduled once no matter how
frequently the same request is encountered. The second
strategy is called EDF-batch, in which the server
broadcasts an item according to EDF but after
broadcasting, it removes the other entries for the same
request.
 Datta et. al. [8] have proposed the protocols that
dynamically change the contents of broadcast according to
client requests. In these protocols the broadcast data and
index are organized using the (1,m) indexing strategy [9].
The server decides the data item to be included in the
broadcast on the basis of priority, which is given by
(IFN*PF), where IF is Ignore Factor, PF is the Popularity
Factor, and N is an adaptive scaling factor. PF makes sure
that most popular data items are included in the broadcast
and IF makes sure that less popular long neglected data
items are also broadcast. In the Constant Broadcast Size
protocol, the broadcast size is fixed, and after each
broadcast cycle, the server calculates the priority of data
items, sorts them in descending order of priority and adds
them to the broadcast until it is full. In the Variable
Broadcast Size protocol, all the items with PF > 0 are
added to the broadcast set.

3. Architecture

 Depending on communication capacity, computing
power, disk storage, size of memory and energy
limitation, MHs can be classified into two groups: 1)
computers with reduced memory, storage, power and
computing capabilities called Small Mobile Hosts (SMHs)
or Clients, and 2) classical workstations equipped with
more storage, power, communication and computing
facilities than the SMHs called Large Mobile Host
(LMHs) or Servers. Each MH has a radius of influence.
An MH can directly communicate with other MHs within
its radius of influence. If two MHs are outside each
other’s radius of influence, they will be able to indirectly

communicate with each other in multiple hops using
intermediate MHs [2] as shown in Figure 1.
 To conserve energy, an MH can operate in Active,
Doze or Sleep mode. In active mode, the MH’s CPU is
working and its communication device can transmit and
receive signals. In doze mode, the CPU of the MH will be
working at a lower rate, but it can receive and examine
messages from other MHs; so the MH can be awaken by a
message from other MHs [3]. In sleep mode, both the
CPU and the communication device of the MH are
suspended. Due to energy and storage limitations, we will
assume that only LMHs will store the whole DBMS (Data
Base Management System) and SMHs will store only
some modules of the DBMS that allow them to query their
own data, submit transactions to LMHs and receive the
results.

Figure 1. Architecture

 This proposed architecture can be used to support
many applications, such as battlefields and disaster
recovery. In battlefields, portable computing devices with
soldiers will work as SMHs while computers stored in
tanks and humvees will work as LMHs. Note that
tank/humvee computers are usually battery-powered so
that they can easily be moved to other tanks/humvees, and
these vehicles do not have to be turned on in order for
their computers to function. These LMHs can store
tactical information regarding enemy and other units in a
database and the SMHs can communicate with the LMHs
to get this information (e.g. location and strength of
enemy units). In a disaster recovery operation, the
palmtops carried by rescuers act as the SMHs and the
computers in mobile hospitals can be viewed as the
LMHs. The LMHs can keep the information about
medical equipments in their databases, and the SMHs can
query about the inventory.

 LMH_1

 SMH_1

SMH_3

SMH_2

4. The Proposed Adaptive Broadcast
Scheduling Algorithms

 The ultimate goal of broadcast scheduling is to
minimize the average response time for clients’ requests,
but for MANET, broadcast scheduling must also address
the issue of energy restriction on both servers and clients.
In MANET, clients’ requests will typically require fast
responses with short soft deadlines [14].
 Broadcast scheduling among the distinguished servers
is possible in the assumed MANET. In MANET the
movement patterns of the servers and the clients and the
network topology are unpredictable. The simplest case is
that in a certain area, there exist one server and multiple
clients. These clients can communicate with the server if
the server’s radius of influence covers them. However, in
the more complicated and practical cases, multiple servers
and multiple clients exist in some areas. A client may
communicate and receive broadcast from one or more
servers depending on its location. Therefore, it is not
energy-efficient that these servers broadcast the same
data. On the other hand, a client who can communicate
with one server only will prefer to have that server
broadcast as many data items as possible so that it can
benefit from broadcasting.
 Based on the above considerations, we develop the
broadcast scheduling algorithms applicable to the case
where multiple servers and multiple clients exist in a
certain area. We assume full data replication among the
servers and the data in a server’s local database can be
divided into two groups: frequently requested data, called
hot data and less frequently requested data, called cold
data. The server’s power level and location information
are two hottest data items that are broadcast by all the
servers. All requests from the clients are “read-only”.
Each request asks for one data item only.
 Each server keeps the power level and location
information of all the other servers in the network in its
local database. It does periodic broadcasting for some hot
data items only and offers cold data on-demand in one
broadcast cycle. We assume one broadcast cycle takes T
units of time and T is large enough to broadcast all hot
data as in traditional periodic broadcast. A broadcast
cycle should also have some time slots to serve data on-
demand. The on-demand data items fill this part
spontaneously. Thus, a broadcast cycle, in terms of time,
consists of time to broadcast the indices and data, the time
for on-demand data and maybe some idle time. The (1, m)
indexing scheme [9] is used in our algorithm. The
periodic broadcast size varies within the range of T. The
algorithm consists of two parts: Part 1 is performed by the
leader server and Part 2 is performed by all the servers in
the system.

4.1. Part 1: Leader Protocol

 When a broadcast cycle starts, the server with the
highest power level will be the leader and schedule data
broadcast. The other servers will follow the instructions
from the leader to arrange their broadcasting schedules.
The idea is that the server with the highest power level
will try to schedule data broadcasting for the other
servers. It will partition the hot data, except for the power
level and location information, into portions. The amount
of data in each portion, which will be assigned to a server
for broadcasting, will depend on the power level of the
server. The server with less energy available broadcasts a
smaller portion of hot data but these data are more
frequently accessed than those broadcast by the server
with more energy. This way the server with less energy
will not have to accommodate too many on-demand
requests. The algorithm is presented below.

Adaptive Broadcast Scheduling Algorithm (Part 1 -
Leader Protocol): for the server with the highest power
level:

Let P1, P2, …, Pi, …, Pn denote the power levels of all n
servers. i represents a server’s id number. Let d = {d1,
d2, …, dj, …, dN} denote the set of the more frequently
requested data items, except power levels and locations of
servers. N is the total amount of data items in set d.
Sort P1, P2, …, Pn in increasing order, with P1 < P2 < …<
Pn;
If the power level of the server who is running this
algorithm is the maximum power level among all the
servers {
for i = 1, …, n
 Calculate the ratio Ri = Pi/P, where P is the sum of P1,
P2, …, Pn;
 Sort dj in set d in decreasing order of the request
 frequency f1, f2, …, fj, which are associated with d1,
 d2, …, dN respectively;
 for i = 1, …, n
 Assign the first Ri * N amount of data items in set d
 to server i;
}
else
 Send an appointment message to the server with the
 highest power level to notify it to start this algorithm
 for the next broadcast cycle;

 Initially, each server will broadcast its power level
and location to start the communication. The server with
the highest power level becomes the leader and runs this
algorithm every C broadcast cycles. The leader may
change since after some time, the leader may have lower
energy than other servers because of its heavier duty of

broadcasting. To restart the algorithm, a routing algorithm
in the mobile ad-hoc network is also assumed to be
available [10].

4.2. Part 2: All Server Protocol

 All the servers in the network will change their
broadcast schedules after receiving a message from the
leader. According to our scheme, the broadcast content of
a server is only a portion of the more frequently requested
data so the number of requests for data items not in the
broadcast content from the clients may increase. We have
to dynamically change a server’s broadcast content so that
broadcast data can satisfy as many requests as possible.
Consequently, the server will save its energy by not
serving the data on demand for many identical requests. A
client will also save energy by going into doze mode to
wait for the broadcast and directly retrieving data from the
“air”. The client can follow the provided index to find the
data items it wants if the broadcast can satisfy its deadline.
Otherwise, the client has to submit a request to the nearest
server available.
 We assume that the server always keeps track of the
request frequency (RF) for each data item. The
Exponential Weighted Moving Average (EWMA) method
[11] given below will be used for calculating request
frequencies.

Sfffff i
n

iiii nnnn /)*...**()1()2()1()()(
12 −++++= −− ααα

Here S = (1 + α + α2 + … + αn-1); fi is the RF of data item
i, fi(n) is the RF of data item i in the current broadcast
cycle n. α amounts to an exponential reduction in the
weight
 If the RF for a particular hot data item is higher than
that of a data item in the current broadcast, this hot data
item should be included in the next broadcast. There are
two alternatives to accomplish this. In alternative 1, this
data item can replace the data item with the least RF in the
current content of the periodic broadcast. After some
time, the content of the periodic broadcast is getting more
and more matching with the clients’ access patterns
through this self-learning process.

Adaptive Broadcast Scheduling Algorithm (Part 2,
Alternative 1): for all servers

Any server in the assumed mobile ad-hoc environment, Si,
will run this algorithm.
For each broadcast cycle do the following:

if Si receives a broadcast assignment message from
another server which is running our proposed adaptive
broadcast scheduling algorithm (part 1) {

if the number of data items in the assignment is less

 than the number of data items in the current
broadcast content

cut down the number of data items in broadcast to
the number of data items in assignment by “drop-
tail”;

 else
add data items from the more frequently requested
data group to the broadcast, up to the number of
data items in the assignment;

}
 if Si receives a data request from a client {

 if Si can satisfy the request within the deadline
 serve the data on demand based on “earliest
 deadline first” rule;

 else
 reject the request;

}
for each data item that was requested in this broadcast
cycle {

calculate the request frequency for this data item;
 if the request frequency of this data item i is greater
than the least request frequency of a data item in the
current broadcast content and this data item is in
more frequently requested data group {

 replace the data item with the least request
frequency in the current broadcast with the
newly requested data item i;

 sort the data items in broadcast content
according to the decreasing order of request
frequency;

 reconstruct the index;

}

}

 In alternative 2, when the RF of a hot data item gets
higher than the RF of a data item in the current broadcast
it is simply added to the broadcast.
 The adaptive broadcast scheduling algorithm, which
consists of part 1 and part 2 with alternative 1, is called
the adaptive replacement broadcast scheduling algorithm
(ARBSA). The adaptive broadcast scheduling algorithm
which consists of part 1 and part2 with alternative 2 is
called the adaptive addition broadcast scheduling
algorithm (AABSA).

5. The Proposed Popularity Based Adaptive
Broadcast Scheduling Algorithms

 The EWMA based algorithms presented above
require a global update when a request arrives. This

requires a lot of communication among servers resulting
in excessive energy consumption. Also data items to be
broadcast are selected according to the global RF ignoring
requests submitted to a server locally. Request deadlines
and client movements are also not considered in
calculating request frequencies. If the leader server leaves
the network or fails, it is not clear who will run Part 1 of
the algorithms. Servers that do not have any clients may
waste energy since they are not required to switch to doze
mode. Also, EWMA is used to calculate the RF of a data
item. EWMA is a good forecasting technique where more
recent values have greater influence than older data
values. Therefore, if request frequencies are calculated
using EWMA, data items requested in the current
broadcast cycle will have more influence on the calculated
request frequencies. Therefore, some of the less popular
requests that were requested earlier may starve or the
clients who requested the data item may leave the area.
 To address the above-mentioned drawbacks, we
propose two algorithms based on popularity factor [8].
They make the same assumptions about the network and
the database as the EWMA based algorithms.

5.1. Broadcast Assignment

 When a broadcast cycle starts, the server with the
highest power becomes the leader and assigns the amount
of data to be broadcast by each server according to the
server’s power level like the EWMA based algorithms. A
server with less power will broadcast fewer data but more
frequent data. The main difference is that the leader server
informs the other servers only about the amount of the
data they should broadcast, and the data items to be
broadcast are taken by these servers from their local
databases. The other difference is that the leader checks if
a server will be able to broadcast the assigned data or not.
If a server cannot broadcast the assigned data then it will
broadcast the data and index from the previous broadcast
so that it does not have to sort data and reconstruct index.
A broadcast cycle in terms of time will consist of time to
broadcast data and index and time to serve data on
demand. A server goes into doze mode after broadcasting
data and index and serving data on demand until its time
to start the next broadcast cycle. The server is allowed to
receive clients’ requests during this period, but the
number of such requests is expected to be low since data
that has high access frequency is broadcast by the server.
Similar to the EWMA based algorithms, the popularity
based adaptive broadcast scheduling algorithms consist of
two parts: leader protocol and all server protocol.

5.2. Part 1: Leader Protocol

Let P1, P2, P3,……….,Pj, ………Pn be the power levels of

the servers S1, S2, S3,…….,Sj, ……Sn currently in the
network,’ n’ is the number of servers currently in the
network.
Let’ j’ be amount of energy required to broadcast one
data item and ‘d’ be the total number of hot data items.

Sort the power levels in ascending order such that P1 <
P2 where P1 and P2 are power levels of S1 and S2 and
the power level of S1 is less than S2
If the server running this algorithm has the highest
power level among all the servers {

calculate the sum of power levels of all the severs ‘P’;
for i = 1,……….,n {

calculate the amount of data to be broadcast by
server Si as Xi = (Pi / P) * d;
if J * Xi is greater than Pi then

send a message to Pi , informing that it has to
broadcast the previous broadcast set;

else
assign the’ Xi’ amount of data to be broadcasted by
server Si ;

}
appoint a backup leader server, which has the 2nd
highest power level;

}
else

send an appointment message to the server with the
highest power level to start this algorithm

 The leader server will run the above algorithm
whenever a change occurs in the sorted list of power
levels maintained by the leader. The back up leader is
assigned so that if the leader moves out of the network or
fails, it will act as the new leader.

5.3. Part 2: All Server Protocol

 The servers, which accept the instructions from the
leader, change their broadcast schedules accordingly.
These servers will sort the hot data items in descending
order of their request frequencies kept in their local
database. After sorting, the servers will take the amount of
data assigned by the leader from their local database and
start broadcasting it. Similar to the argument we have
made for ABRSA’s and AARSA’s part 2, the servers must
dynamically change their broadcast content so that
broadcasting can satisfy most of the requests. In these
algorithms, the servers keep track of the number of
requests for all the hot data items and use this information
to calculate the popularity factor (PF) of data items as
defined below [8].
 The popularity factor PFA of a data item A is defined
as the number of clients interested in A at a particular time
T [8]. When a client requests for A, the popularity factor is
incremented by 1 and the system records the

corresponding time TSA. A corresponding decrement of 1
will be performed at TSA + RL to reflect the departure of
the client who requested A, where residence latency (RL)
is defined as the average time a mobile unit spends in a
cell. RL will be computed a priori based on the advance
knowledge of user movement patterns and cell geography
[8]. Requests have deadlines, so whenever the deadline of
a request for A expires, a decrement of 1 is performed to
the popularity factor. The idea is to include only those
data items in the broadcast that can satisfy the requests of
clients currently in the cell within the associated
deadlines. This way the server has to keep track of only
those requests, which were received during the interval
current_time –RL [8].
 If the popularity factor of a hot item becomes higher
than that of a data item in the current broadcast then it is
added to the broadcast using the two alternatives
described in Section 4.2. Below is the algorithm’s part 2
using alternative 1.

Real Time Popularity Based Adaptive Replacement
Broadcast Scheduling Algorithm (Part2, Alternative 1):

Every server Si will run this algorithm.
For each broadcast cycle do the following:

If Si receives a message to broadcast the previous
broadcast set

broadcast the previous broadcast set and index
else {

sort the hot data items in descending order according
to popularity factor;
take the first Ri amount of data from the local
database;
while a new assignment message is not received {

broadcast the data using (1, m) indexing technique;
if Si has received a data request for a cold item

serve data on demand based on the basis of
earliest deadline first;

for each data item requested in (current_time - RL)
period {

calculate the popularity factor;
if the popularity of this data item becomes greater
than the popularity of any of the data items in the
current broadcast content {

replace the data item with the least popularity
factor in the current broadcast with this data
item;
reconstruct index;

}
}
if Si did not receive any requests in the previous C
broadcasts

broadcast a greeting message to clients and wait
for a reply;

if no reply received
switch to doze mode until a request is received;

if this is the backup leader
if the power level of the leader was received

continue;
else

assume control and run the algorithm part 1;
}

}

 The proposed popularity based algorithm that uses
alternative 1 for part 2 is called the real-time Popularity
Based Adaptive Replacement Broadcast Scheduling
Algorithm (PBARBSA), while the one that uses
alternative 2 for part 2 is called the real-time Popularity
Based Adaptive Addition Broadcasting Scheduling
Algorithm (PBAABSA).

6. Simulation Model

6.1. Simulation Model Description

 In order to measure the performance of the proposed
algorithms, simulation experiments are conducted. The
simulation model is implemented using Visual Slam as the
simulation language and Awesim as the simulation tool
[13]. Global transactions are created with a fixed inter-
arrival time using an exponential distribution. Each
transaction has a creation time, ID, data item requested,
and ID of the mobile unit requesting the data. The data
item requested is generated using the Gaussian random
distribution and is assigned randomly to a mobile unit.
Then the data item generated is checked against the
broadcast of the servers within the area of influence of the
mobile unit. If the data item is found it is downloaded,
otherwise a request is issued and the mobile unit goes into
doze mode. And it tunes into subsequent broadcasts to
find out if the requested data item is included in the
broadcast or not. If the request was made for a cold data
item then the client tunes into the on demand portion of
the data to find out whether the desired data item is being
served on demand. The mobile servers are defined as
resources in the simulation model.

 The attributes associated with each server are ID, X
and Y coordinates, energy level, radius of influence, time
in active mode, and time in doze mode.

6.2. Performance Metrics

 Below are the four performance metrics we have used
to evaluate the performance of the proposed algorithms:

Energy Consumed by Mobile Units
(Time Spend by Mobile Unit in Active Mode * Energy
Consumed per unit Time in Active Mode) + (Time Spend
by Mobile Unit in Doze Mode * Energy Consumed per
Unit Time in Doze Mode)

Energy Consumed by Server
(Time Spend by Server in Active Mode * Energy
Consumed per Unit Time in Active Mode) + (Time Spend
by Server in Doze Mode * Energy Consumed per unit
Time in Doze Mode)

Access Time
The time interval between the submission of a request to
the server and the moment the client receives a reply.

Broadcast Hit Ratio
Broadcast Hit Ratio =
 The Total Number of Requests Satisfied by Broadcast
The Total Number of Requests Generated by Clients

6.3. Simulation Parameters

Table 1. Static parameters of simulation model

Table 2. Dynamic parameters of simulation model
Parameter Meaning Default Range

Num_LMH Number of
LMH

3 3-5

Ratio_cold_hot Ratio of cold
to hot requests

5 % of
database

5% to
35%

 The simulation parameters are summarized in Tables
1 and 2. The number of SMHs in the system is 1000. The
positions of LMH and SMH are assumed to be inside a
500unit X 500unit square region. The initial locations (i.e.
X and Y coordinates) of all the MHs are obtained using a
random distribution within a 500 X 500 square units
region. The Gaussian distribution [15] is used to generate
the workload. Sample runs were performed initially to get
the hot data items.

6.4. Simulation Results

 The experiments were conducted using 3 servers and
4 servers. In Fig. 2-5, ARBSA3 and ARBSA4 mean
Adaptive Replacement Broadcast Scheduling Algorithm
tested using 3 servers and 4 servers, respectively.
Similarly for The Adaptive Addition Broadcast
Scheduling Algorithm (AABSA), the real time Popularity
Based Adaptive Replacement Broadcast Scheduling
Algorithm (PBARBSA), and the real time Popularity
Based Adaptive Addition Broadcast Scheduling
Algorithm (PBAARBSA).

Broadcast Hit Ratio

 Fig. 2 shows the effect of number of requests for cold
data on the broadcast hit ratio. Broadcast hit ratio is
obtained by dividing the number of hot data requests
satisfied by the periodic broadcast by the total number of
requests. The broadcast hit ratio for addition algorithms is
higher than that for the replacement algorithms. In the
addition algorithms, a data item is added to the broadcast
if its RF becomes higher than that of any of the data items
in the current broadcast. Therefore, the periodic broadcast
contains more of the hot data items and most of the
requests are satisfied by the periodic broadcast. In the
replacement algorithms, the periodic broadcast size is
fixed, so in order to include a data item in the broadcast,
one of the data items in the current broadcast has to be
dropped. It is possible that the dropped data item is more
popular than the added data item; so the number of
broadcast hits decreases. Fig. 2 also shows that the
popularity-based algorithms provide a better broadcast hit
ratio than the EWMA based algorithms. Since the
popularity based algorithms consider local RF in deciding

Parameter Meaning Default

Bandwidth LMH Bandwidth of
wireless medium [16] 1 Mbps

Bandwidth SMH Bandwidth of
wireless medium [10] 100 kbps

CPU_power_LMH CPU Power of
LMH [5]

140 MIPS

CPU_power_SMH CPU Power of
SMH [9]

4 MIPS

LMH_power LMH Power
Dissipation Rate [12]

170W per
hour

Mem_access_time Main Memory [5]
access time per word

0.00018 ms

Data_item_size Data Item Size 25 KB

Req_size Size of request 1 KB

SMH_power SMH Power
Dissipation Rate [9]

7W per
hour

Word_size Number of bytes
per word [5]

8

Radius_SMH Radius of influence
of SMH

100 unit

Radius_LMH Radius of influence
of LMH

200 unit

Inter-arrival Time Time between
requests

0.02

D_SIZE Database Size 1800

Hot_data Number of hot data
Items

20% of
database

which data items to include in the broadcast. So it is
possible to include the requested data items in the
broadcast more quickly than in the case of the EWMA
based algorithms, in which the RF of a requested data item
has to compete against the global request frequencies of
the data items currently in the broadcast. This makes it
difficult to include requested data items in the broadcast.
 Another important observation from Fig. 2 is that, as
the number of servers increases, the broadcast hit ratio
increases. This is possible because clients can receive
broadcasts from multiple servers and the likelihood that
one of the servers is broadcasting the desired data item
also increases. The figure also reveals that as the number
of requests for hot data increases, the hit ratio drops in the
addition algorithms simply because fewer requests for hot
data items are being generated. But in the case of the
replacement algorithms, the ratio increases when the
number of requests for hot data items decreases up to a
certain point and then it starts decreasing again. This
happens because initially when there are too many
requests, the servers cannot schedule all of them since the
broadcast size is fixed, but as the rate drops, the servers
are able to schedule more data items in the broadcast.
Later on, the rate drops simply because there are not
enough requests coming to increase the RF of less popular
hot data items to a level that they can be included in the
broadcast.

0.5

0.6

0.7

0.8

0.9

1

1.1

5 10 15 20 25 30 35

Percentage of Cold Requests

B
ro

ad
ca

st
 H

it
R

at
io

AABSA3 PBAABSA3
ARBSA3 PBARBSA3
AABSA4 PBAABSA4
ARBSA4 PBARBSA4

Figure 2. Broadcast hit ratio vs. percentage of

cold requests

Power Consumed by Clients

 Fig 3 shows that the energy consumed by clients
increases as the number of requests for cold data items
increases. A client can issue a request only after finding
out that the desired data item is not in the broadcast of all

the servers within its area of influence. In the proposed
algorithms, only hot data items are served through
periodic broadcast; so for cold data items, clients must
issue a request and then monitor the periodic broadcast
and on demand broadcast until the desired data item
arrives. So, clients have to spend more time in active
mode if the number of requests issued for cold data items
is high. The figure also shows that the addition algorithms
cause clients to consume more energy than the
replacement algorithms. The reason is that, as more and
more data items are added to the periodic broadcast, the
index size becomes larger, and thus the clients consume
more energy as they have to search through a larger index.
At the same time, as the number of data items in the
periodic broadcast increases, more requests are satisfied
by periodic broadcast, and thus energy consumed by
clients decreases. Higher energy consumption by clients
occurs when the addition algorithms are used suggests that
searching a larger index offsets the energy savings
achieved from including more data items in the broadcast.

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35

Percentage of Cold Requests

C
lie

nt
 P

ow
er

 C
on

su
m

pt
io

n
(W

at
ts

)

AABSA3 PBAABSA3
ARBSA3 PBARBSA3
AABSA4 PBAABSA4
ARBSA4 PBARBSA4

Figure 3. Total power consumed by clients vs.

percentage of cold requests

 Also obvious from Fig. 3 is that if there are more
servers in the area of influence of clients, then energy
consumption by clients increases. This occurs because a
client has to check the broadcast of multiple servers to get
the desired data item, so it has to spend more time in
active mode, which results in higher energy consumption.
Finally, the energy consumed by clients is less when the
popularity based algorithms are used. These algorithms
consider the local request frequencies to schedule data
items for periodic broadcast. Therefore, it is easier to
include a data item in the broadcast and clients have to
tune into fewer subsequent broadcasts to obtain the
desired data items. The difference in energy consumption

between the popularity based algorithms and the EWMA
based algorithms increases when the replacement
algorithms are used. In the replacement algorithms, the
method used to calculate RF has more influence on
performance since the broadcast size is fixed, and a
scheduling algorithm that can fill the periodic broadcast
with data items that are more desired by clients will
perform better.

Access Time

 Fig 4 shows that when the number of requests for the
cold data items increases, the average access time for hot
data decreases. When the number of requests for cold data
items increases, there is a corresponding decrease in the
number of requests for hot data items. Therefore, it
becomes faster for a server to include data items in the
periodic broadcast as fewer data items are waiting to be
scheduled in the broadcast. This figure also depicts that
the average access time is lower when there are more
servers in the network as this increases the likelihood that
one of the servers is broadcasting the desired data item.
Therefore, the clients can get data faster and the average
access time is lower. It is also obvious from Fig. 4 that
the addition algorithms provide a lower average access
time since they keep on adding data items to the
broadcast, which results in the requests being satisfied
faster. Also the popularity based algorithms provide better
access time than the EWMA based algorithms since with
the former algorithms, it is faster to include a requested
data item in the broadcast, which results in the clients
requests being satisfied faster.

0
5
10
15
20
25
30
35
40
45
50

5 10 15 20 25 30 35

Percentage of Cold Requests

A
ve

ra
ge

 A
cc

es
s T

im
e

fo
r H

ot

R
eq

ue
st

s (
se

c)

AABSA3 PBAABSA3
ARBSA3 PBARBSA3
AABSA4 PBAABSA4
ARBSA4 PBARBSA4

Fig. 4. Average access time for hot requests vs.

percentage of cold requests

Power Consumed By Servers

 Fig. 5 shows the average power consumed by a server
in the network. The behavior of servers is very complex.
The energy consumed by servers depends upon the
following three factors: energy required to broadcast data
items, energy required to handle requests, and energy
required to perform computations in doze mode. The
average energy consumption by a server is relatively
stable although the mix of hot and cold requests is being
changed. The reason for getting the stable results is that
when the number of cold requests is increased, there is a
corresponding decrease in the number of hot requests, so
energy saved by not receiving hot requests is balanced by
receiving cold requests. The servers have to perform
fewer calculations when changing the broadcast content
since there are fewer hot requests in the queue. But
because there are more requests in the on demand queue,
the energy saved by performing fewer calculations on hot
requests is balanced with that saved by performing more
calculations on the cold requests.

0

5

10

15

20

25

30

5 10 15 20 25 30 35

Percentage of Cold requests

A
ve

ra
ge

 S
er

ve
r P

ow
er

C

on
su

m
pt

io
n

(W
at

ts
)

AABSA3 PBAABSA3
ARBSA3 PBARBSA3
AABSA4 PBAABSA4
ARBSA4 PBARBSA4

Figure 5. Average power consumed by a server
vs percentage of cold requests

 In performing calculations for energy consumption
for servers, the cost involved in sending messages to other
server has been ignored since a routing table must be
available to perform these calculations. So when an
update in the global table is performed, the cost involved
in exchanging messages is ignored, but it is expected to be
significant. This is one of the main reasons that the
popularity based techniques perform poorly in terms of
energy consumption. The other reason is that when its
time to update the broadcast, in the EWMA based
techniques, the server considers only those requests that

were received in the current broadcast cycle. But in the
case of popularity based techniques, the server has to
consider requests received during the interval
current_time-RL, which is larger than the broadcast
cycle. Therefore, more requests have to be considered
when scheduling broadcast in the popularity-based
techniques than in the EWMA based techniques. Fig. 5
also shows that the average energy consumed by servers
is higher when the addition algorithms are used. When a
data item is added to the broadcast the broadcast size
increases, so does the energy consumed by servers.
Also, if there are more servers present in the network
then the average energy consumed by a server is less
since each server has to broadcast fewer data items as
well as it has to serve fewer data items on demand.

7. Conclusions and Future Work

 This paper has proposed data broadcasting
algorithms for mobile ad-hoc networks (MANET).
These algorithms consider three issues in scheduling
broadcasts: energy consumed by mobile clients, energy
consumed by mobile servers, and real-time constraints
on client requests. The algorithms differ from each
other based on how much data should be assigned to
individual servers to broadcast, how request frequencies
are computed, how the broadcast contents is dynamically
changed, and how mobility of client and servers is
considered. Simulation experiments conducted to study
the performance of the proposed algorithms show that
the popularity-based algorithms provide better broadcast
hit ratio, access time, and client energy consumption, but
more energy consumption than the EWMA based
algorithms. The addition algorithms provide better
broadcast hit ratio and access time but they are not
energy-efficient for servers and clients. The replacement
algorithms provide better energy consumption for clients
and servers but do not give good broadcast hit ratio and
access time. If there are more servers in a MANET, then
the broadcast hit ratio, access time, and energy
consumed by servers improve but the energy consumed
by clients becomes worse.
 The choice of an appropriate strategy will depend
on the requirements of the environment. If access time
and broadcast hit ratio are of prime importance, then the
addition algorithms can be used. But if the main aim is
to conserve energy consumed by clients and servers,
then the replacement algorithms should be employed.
 For future work, simulation experiments studying
the effects of client and server mobility will be
conducted.

8. References

[1] Askoy, D. and Franklin, M., “Scheduling for Large Scale
On-Demand Data Broadcasting”, Proceedings of the 12th
International Conference on Information Networking, pp. 656-
659, Jan 1998.
[2] Bandyopadhyay, S., and K. Paul, “Evaluating the
Performance of Mobile Agent-Based Communication among
Mobile Hosts in Large Ad-Hoc Wireless Network”, MSWIM
1999.
[3]Barbara D., T. Imielinski, “Sleepers and Workaholics:
Caching Strategies in Mobile Environments”, ACM SIGMOD,
May 1994.
[4] Datta, A., VanderMeer, D. E., Kim, J., Celik, A., and
Kumar, V., “Adaptive Broadcast Protocols to Support
Efficient and Energy Conserving Retrieval from Databases in
Mobile Computing Environments”, A TimeCenter Technical
Report, University of Arizona, April, 1997.
[5] DECdirect Workgroup Solutions Catalog, winter 1993.
[6] Hong X., et al, “A Group Mobility Model for Ad Hoc
Wireless Networks”, MSWIM 1999.
[7] Imielinski, T. and Viswanathan, S., “Adaptive Wireless
Information Systems”, in Proceedings of SIGDBS (Special
Interest Group in Database Systems) Conference, October
1994.
[8] Imielinski, T., Viswanathan, S., and Badrinath, B. R.,
“Power Efficient Filtering of Data on Air”, Proc of 4th Intl
Conference on Extending Database Technology, Cambridge,
March 1994, pp. 245-258.
[9] Imielinski, T., Viswanathan, S., and Badrinath, B. R.,
“Data on Air: Organization and Access”, IEEE Transactions
on Knowledge and Data Engineering, Vol. 9, No. 3, May
1997, pp. 353-372.
[10] Ko, Y., Vaidya, N., “Loacation-Aided Routing (LAR) in
Mobile Ad-hoc Networks”, MOBICOM 1998.
[11] Lam, K., Chan, E. and Yuen, C. H., “Data Broadcast for
Time-Constrained Read-Only Transactions in Mobile
Computing Systems”, Proceedings of the First International
Workshop on Advance Issues of E-Commerce and Web-Based
Information Systems, April 1999.
[12] Michael, C. et. al., “Aspects of Energy Conservation on
the St. George University of Toronto Campus”, A Report by
Division of Environment at the University of Toronto,
1996/97.
[13] Pritsker A. Alan B, O’Reilly Jean J., “Simulation with
Visual SLAM and Awesim”, Systems Publishing Corp., 1999.
[14] Ramamritham K., “Real-Time Databases”, Distributed
and Parallel Databases, Vol. 1, No. 2, April 1993, pp 199-226.
[15]Stathatos, K., Roussopoulous, N. and Baras, J. S.,
“Adaptive Data Broadcast in Hybrid Networks”, 23rd VLDB
1997.
[16] Xuan, P., Sen, S., Gonzalez, O., Fernandez, J., and
Ramamritham K., “Broadcast on Demand: Efficient and
Timely Dissemination of Data in Mobile Environments”, 3rd
IEEE Real-Time Technology Application Symposium, 1997.

	Abstract
	
	
	
	
	Broadcast Hit Ratio
	Power Consumed by Clients
	Access Time
	Power Consumed By Servers

