HARDWARE/SOFTWARE TRACK

-1 VERY LARGE MEMORIES

CHOOSING THE BEST STORAGE TECHNIQUE
FOR A MAIN MEMORY DATABASE SYSTEM *

Le Gruenwald

Margaret H. Eich

Department of Computer Science and Engineering
Southern Methodist University
Dallas, Texas 75275

Abstract. Alternative partitioning strategies for da-
tabase storage are examined within a Main
Memory Database environment. An analytic per-
formance analysis indicates that horizontal and
single vertical are the only logical choices.

Introduction

A Main Memory Database (MMDB) system assumes
that the database is completely memory resident in a
semiconductor memory ([5], [6], {9], [11]). Due to the
many differences between RAM memory and secondary
storage devices, many conventional database storage,
access, and recovery approaches must be rethought in the
MMDB context [7]. The purpose of this paper is to
examine alternative techniques for storing database
records (tuples) in an MMDB. Through an analytic per-
formance analysis we compare the different choices and
recommend the approaches to use based on overall pro-
cessing requirements and types of transactions executed.

We assume an MMDB model where the primary
copy of the database is in a semiconductor Main Memory
(MM) and a backup database resides on a secondary
storage device, Archive Memory (AM). Periodically, data
must be checkpointed from MM to AM. An alternative
design would assume that MM is completely nonvolatile.
This research is applicable under either design. Both MM
and AM are divided into fixed size pages with logical
records (tuples) contained within them.

In this paper we examine database partitioning tech-
niques to determine which storage approach should be
used to store data both in the AM and MM. We assume
that the AM and MM structures are the same. This is
needed due to the fact that data is checkpointed from
MM to AM at a page level, and that efficient reload to
MM from AM after a system failure is crucial. Partition-
ing is the process of assigning logical objects (relations) to

several physical objects (pages in MM or blocks in AM) in
a stored database [13]. Although we use the terms tuples
and relations our results apply to any data model where
conventional files (pages and records) are used for storage
on AM. There are many different techniques one can use
to partition a database into logical groups. The cost
model used in this paper compares the different
approaches based on the impact a partitioning approach
has on all database processing functions including reload
and transaction processing. This research represents a
complete examination of partitioning techniques in an
MMDB system. Its originality is that it is the first such
endeavor.

The following sections describe the analysis in detail.
In section 2, possible partitioning techniques are intro-
duced. Section 3 describes the overall approach we take
to perform our analysis. Section 4 examines and ranks
each partitioning technique based on its performance for
eight different properties which impact processing perfor-
mance. Section 5 contains the complete analysis for all
partitioning techniques. Section 6 summarizes results
and makes recommendations for selecting the best
approach.

Database Partitioning Techniques

Many database partitioning techniques have been
developed to physically organize data on storage devices.
Each technique divides the data into groups which are
then assigned to physical pages. We classify these into
the following six categories: horizontal partitioning, group
horizontal partitioning, single vertical partitioning, physi-
cal vertical partitioning, group vertical partitioning, and
mixed partitioning. In our discussions and analysis we
assume that one technique is used for all pages in a data-
base. Recommendations for best partitioning technique
are made based on the processing characteristics of the

* This material is based in part upon work supported by the Texas Advanced Research Program (Advanced

Technology Program) under Grant No. 2265.

THO0326-9/90/0000/0001/$01.00 © 1990 IEEE

database. It is certainly conceivable that a different tech-
nique could be used for each relation. It is also quite
possible for an index to have a different partitioning tech-
nique from its target relation. Since our results depend on
the processing characteristics of the target system they
are valid at the database, relation, or index level. The
use of multiple partitioning techniques within the same
MMDB system, however, requires much more research as
its use would complicate the design of the MMDB DBMS
code itself. Also, the address translation process required
to access MM data would be more complex.

Horizontal partitioning subdivides a relation to form
groups of tuples without taking tuple affinity into
account. Horizontal partitioning is believed to be a
natural way to partition data in many application
environments [15]. Most commercial database systems
use this partitioning strategy.

The group horizontal partitioning technique decom-
poses a relation into groups of tuples based on their
affinity. Tuples that are more frequently used together
are placed in the same group. This technique has been
implemented in several distributed database systems
([14], [18].

Single vertical partitioning subdivides a relation into
groups each of which contains all tuple values for only
one type of attribute. This technique is often used to
implement inverted files.

In the physical vertical partitioning technique, each
tuple is divided into physical groups of fixed sizes that
are independent of attribute lengths. Some attributes
may spread across several groups. In this technique, a
group size is chosen independently of attribute sizes or
tuple sizes. Therefore the same address translation
mechanism can be applied to all relations.

Group vertical partitioning has been extensively stu-
died in a variety of computing environments ([13], [4]).
It subdivides attributes of a relation into groups based on
affinity. Attributes that are used together are stored in
the same group. Conversely, attributes which are not
used together are stored in different groups.

The mized partitioning technique has advantages of
both horizontal and vertical partitioning ([1],(2],(3]). Par-
titions of data are constructed by either applying group
horizontal to physical/group vertical partitioning or vice
versa. SDD-1 distributed system is one of the database
systems that uses mixed partitioning to partition its data-
base [14].

Among the six possible techniques, we immediately
exclude group horizontal partitioning from our analysis.
This is due to the following reasons:

1) In order to group the tuples based on their
affinity, we must examine the tuple affinity for all
tuples in the relation. This cost can be tremen-
dously high since the number of tuples in a rela-
tion is generally very large. The relative cost for
such an operation in an MMDB system is much
greater and the benefits much less than in a con-
ventional database system.

2) Insertion of a tuple requires regrouping of tuples
in the database. Since the regrouping process is
very expensive as mentioned in (1), having to per-
form it often is intolerable in an MMDB system
where processing times are fast.

Since mixed partitioning requires the existence of group
partitioning, this leads to the exclusion of mixed parti-
tioning from our analysis. In brief, from the set of six
possible partitioning techniques, we will conduct our
analysis on the single horizontal or horizontal for short,
single vertical, physical vertical, and group vertical parti-
tioning techniques.

Approach

To compare the four partitioning techniques, we
introduce the following properties:

1) Number of physical pages required to store an
entire relation.

2) Cost to initially load a relation in main
memory.

3) Cost to delete an attribute from a schema.

4) Cost to insert an attribute into a schema.

5) Cost to project onto selected attributes in all
tuples from a given relation.

6) Cost to select a tuple from a given relation.

7) Cost to insert a tuple into a relation.

8) Cost to modify a tuple.

The first property is used to derive costs for reload as it
indicates the number of pages (and thus I/Os) needed.
The remaining properties will be used to determine the
performance of a technique based on the number of MM
references performed in processing database transactions.
The eight properties are complete in that they can be
used to derive the cost (based on memory references and
I/0O requirements) for each type of transaction. To delete
a tuple, we must identify the tuple and free up the space
occupied by the tuple. This is similar to selecting a
tuple. Thus the tuple deletion cost can be calculated by
using the property of the tuple selection cost (6). The
join of two relations, say r and s, requires the product of
r x s to be performed followed by the selection on com-
mon attributes, and finally followed by the projection of
attributes. The cost to compute the product of two rela-
tions can be determined using the cost to select n, * n,
tuples from two relations r and s, where n, and n, are the
number of tuples in r and in s respectively. Therefore, to
compute the cost to join to relations, we can use the cost
to select a tuple (6) and cost to access attributes (5) .
Modification of a schema requires deletion/insertion of a
single attribute or a group of attributes from/into the
schema. Thus the cost to modify a schema is determined
by the two properties: cost to delete an attribute from a
schema (3) and cost to insert an attribute into a schema
(4)

Our overall performance strategy is to first evaluate
each partitioning technique based on each of these 8 pro-

perties. This will allow us to rank each partitioning tech-
nique on each property. Due to the many variables and
parameters involved, it proved to be difficult to provide a
more precise measure. However, the impreciseness and
simplicity of this ranking approach is overcome in the
second phase of the evaluation. In this phase we obtain a
weight (based on frequency of usage) for each property
which indicates how important the property is in transac-
tion performance and in reloading. The most important
property has the highest weight. We then determine the
total weighted value for each database partitioning tech-
nique as follows: .
total weighted value =Y, w;r;
i=1

Where w; is the weight associated with property i, and r;
is the ranking of the technique for the property i. A
ranking of 4 indicates that this technique yields the
lowest cost for that property, and ranking of 1 indicates
that it yields the highest cost for that property. The
technique with the highest total weighted value is the
best choice. However, since we can not predict the fre-
quency of occurrence of a property, we examine all
possible frequencies and recommend the best techniques
for those frequencies. No one partitioning technique is
best under all situations. Here is how we overcome any
problems with the rankings. A change to the total
weighted value can be due to either a change in a pro-
perty weight or rank. By examining all possible frequen-
cies we simulate changes to the ranks as well.

Analysis of the Eight Properties

In this section we summarize the results of ranking
the eight properties. A more complete treatment of the
evaluation can be found elsewhere [8].

We wrote a computer program to test the number of
pages incurred in each technique under realistic combina-
tions of parameter values (relation size, page size, tuple
size, group size). In most of the cases (71.78%) single
vertical performs either better or at least as well as the
other three techniques. In 23.98% of the cases, group
vertical yields the same or fewer number of pages than
the other techniques. When group size is divisible by
tuple size, physical vertical yields a good result. How-
ever, when this is not the case, it’s behavior was usually
much worse than the other approaches. Because of this
unpredictability, we rank physical vertical as the worst
for this technique. The final rankings obtained for this
first property are thus as reported in Table 1: horizontal
(2), single (4), physical (1), and group (3).

The load MM cost is the cost to store a relation into
main memory. This cost may be incurred when a schema
modification is needed. There are three major steps
needed to store a relation into main memory: create
address translation tables for MM access, perform address
translations, and store values of the tuples into MM. All
of these are very strongly related to the number of pages
for the relation. Even though group vertical partitioning
has lower translation table creation cost and address

translation cost than physical vertical, the MM load cost
incurred in it is higher than the one in physical vertical
due to the cost of the attribute grouping process. When
including this cost it becomes the worst choice. In brief,
we derive the following ranking for the MM load pro-
perty: horizontal (3), single (4), physical (2), and group
(1).

Attribute deletion cost is the cost to delete an attri-
bute from a schema. Except for the single vertical
technique, the other techniques do require reorganization
of either the entire database (horizontal and physical
vertical) or a group of attributes (group vertical). Thus
single vertical is best. Physical vertical performs the
worst due to its behavior for property one. Group verti-
cal is better than horizontal because of the smaller
amount of data to be reorganized. The rankings for this
property are derived as follows: horizontal (2), single (4),
physical (1), and group (3).

Attribute insertion cost is the cost to insert an attri-
bute into a schema and to store its values. As with the
attribute deletion cost, a reorganization of the database is
needed for all techniques except single vertical. There-
fore the single vertical partitioning technique yields the
lowest attribute insertion cost. Since the MM load cost
dominates reorganization, using the results obtained from
the MM load cost property, we find that the attribute
insertion cost incurred by group vertical partitioning is
the highest, by single vertical is the lowest, and by hor-
izontal is lower than by physical vertical partitioning.
We obtain the following rankings for this property: hor-
izontal (3), single (4), physical (2), and group (1).

Attribute access cost is the cost to access (project)
all values for a group of n attributes in a relation. There
are three major steps needed to access a group of attri-
butes in a relation: locate physical pages in which the
attributes are stored, find the physical locations that are
used to store the values of the attributes, and access the
values of the attributes. The difference between the cost
to access a group of n attributes incurred by the parti-
tioning techniques is caused by the cost to determine the
physical pages where the attributes are stored. This is
dominated by the number of pages which are needed to
store the desired attributes. As discussed earlier, horizon-
tal needs more pages to store a relation than single verti-
cal partitioning. Since physical vertical and group vertical
would require that only a subset of the total pages be
identified (those in which the attributes are stored), their
behavior is better than horizontal with their relative
behavior as shown for property one. The ranking for this
property is derived as follows: horizontal (1), single (4),
physical (2), and group (3).

Tuple selection cost is the cost to reconstruct (select)
a tuple from a relation. There are two major steps
needed to select a tuple given’its identifier: determine the
physical address of the tuple and access the tuple’s values
for all attributes. The difference between the cost of the
four techniques comes from the number of address trans-
lations performed. The horizontal partitioning technique
requires only one address translation for each tuple,

therefore it yields the lowest cost. Single vertical requires
address translation for each attribute in each tuple.
Thus it is worse. The behavior for physical and group
are similar, with the best determined by the number of
groups involved. Generally we can conclude the follow-
ing ranking: horizontal (4), single (1), physical (2.5), and
group (2.5).

Tuple insertion cost is the cost to insert a tuple into
an existing relation. There are three major steps needed:
find free space to insert the tuple, allocate new pages and
update translation tables if no room is found, and store
the tuple’s value. The major difference in approaches is
due to the cost to examine for free space and to perform
address translations. In the best case, each approach
would require a constant overhead to check for free
space. In the worst case each page must be examined.
Since the number of pages, then, determines the worst
case behavior, ranking in this category is largely deter-
mined by that for the first property. However, we
assume that free space within each group is the same.
That is, to find free space within each group, only one
group need be examined. Free space within other groups
is at the same relative position. Therefore, the perfor-
mance of horizontal is worse than either physical or
group vertical. In general we conclude the following
rankings for this property: horizontal (1), single (4), phy-
sical (2.5), and group (2.5).

Tuple modification cost is the cost to modify n attri-
butes in a specific tuple. The two major steps to modify
n attributes in a tuple are: identify physical locations of n
attributes, and modify the values of the attributes. The
differences between the costs come from the number of
address translations performed. The horizontal partition-
ing technique requires (n + 1) address translations (1 for
the tuple, and n for n attributes). Single vertical requires
(2 * n) address translations, while physical vertical as well
as group vertical partitioning, each requires
((2 * number of groups) + n) address translations. In gen-
eral, the number of attributes we want to modify is very
small. Therefore, single vertical partitioning yields lower
tuple modification cost than physical vertical and groug
vertical partitioning do. Whether physical vertical parti-
tioning yields higher cost than group vertical partitioning

depends on the number of groups each technique has.
Generally we can conclude the following rankings: hor-
izontal (4), single (3), physical (1.5), and group (1.5).

In Table 1 we provide a summary of the rankings
found in the preceding paragraphs. Note that single
vertical is the best in 6 of the 8 cases and second in
another. However, for the property which we would
expect to have the highest weight (tuple selection) it has
the lowest rank. Thus the detailed analysis discussed in
the next is warranted. As mentioned earlier, this addi-
tional phase will compensate for any errors in this subjec-
tive ranking.

Total Analysis

In this section, we give a total analysis of all four
partitioning techniques to identify the technique which
yields the lowest overall cost. The technique that has the
highest total weighted value W incurs the lowest overall

8
cost. Recall that W is defined as W = Y w;r;, where w; is
i=1

=
the weight of the property i, and r, is the rank of the pro-
perty i. The weight of each property is computed as the
sum of the frequencies of use of all transaction types
which use the property to determine their processing
costs. For example, if the property i is used to deter-
mined the cost of n transaction types, then the weight w;
of property i is the sum of the frequencies of use of all n
n
transactions: w; = Y f; where f; is the frequency of use of
=1
transaction type j. Table 2 shows for each transaction
type the properties used to derive the cost for that tran-
saction as well as the notation used in our analysis to
indicate the frequency of occurrence for that transaction.

Cost, Horizontal | Single Vertical | Physical Vertical | Group Vertical
Number of Pages 2 4 1 3
Load MM 3 4 2 1
Attribute Deletion 2 4 1 3
Attribute Insertion 3 4 2 1
Attribute Access 1 4 2 3
Tuple Selection 4 1 2.5 2.5
Tuple Insertion 1 4 2.5 2.5
Tuple Modification 4 3 1.5 1.5

Table 1. Ranking of The Partitioning Techniques for the Eight Properties

Transaction Type | Frequency | Properties Needed
Project attributes foroj 1,5
Select a tuple Y 6
Modify a tuple fumod 8
Delete a tuple figel 6
Join two relations fioin 1,5,6
Modify a schema fochmod 1,2,3,4
Insert a tuple fiine 1,7

Table 2. Transaction Types and Properties Needed to Compute Their Costs

From the information given in the above table we
derive the weights for the properties as follows:
W, = fpmj + fjo'm + fochmod * Ttinsy W2 = fichmods Wa = faehmod
W4 = lschmods Ws = Tproj + fjoin Wo = el + fiaer + fjoins
Wy = fyines W = fymoa- The total weighted values W (hor-
izontal), W, (single vertical), W, (physical vertical), and
W, (group vertical) are given by the formulae:

Wy =300y + Mo + i + s + lioin + 100cppoq + 3Hoing

W, = 8fprgi + o + 3ficnod + fug + Mjoin + 16fpeumod + fiine

W, = 30,0; + 250y + 150500 + 25040 + 5.5f1cia + Ofpnmod + 3-50yn
W' = Ofm’ + 250 + 15000 + 2504y + 850y + 8 ypoq + 5.5

We observe that the total weighted value in physical
vertical partitioning W, is always less than the one in
group vertical partitioning W,. This indicates that physi-
cal vertical is not the best technique in any case. There-
fore we exclude it from further analysis.

We compare the total weighted values of the parti-
tioning techniques in four cases of transaction mixes:

1. Retrieval (Transactions allowed are selection,
projection, and join.),
2. Update (Transactions allowed are tuple
modification, tuple insertion, and tuple deletion.),
3. Schema modification (Only transaction allowed
is schema modification.),
4. Mix of all three cases (All seven transaction
types listed in Table 2 can be processed).

In each case, we examine the effects of the frequencies of
use of related transaction types on the partitioning tech-
niques. We then determine the situations in which a par-
ticular technique yields the highest weighted total value.
In other words, we establish the conditions for the best
techniques based on the frequencies of the related tran-
saction types.

Retrieval Environment

In this environment, we assume that the only tran-
sactions that can be processed are project attributes (fre-
quency f), select a tuple (f,), and join of two relations
(fyoin). We have written a computer program to examine
the impact of the selection, project, and join frequencies
on the total weighted values of the partitioning tech-
niques. The program, examines the impact of the six
possible relative orders of the three frequencies. In each
test run, one of the three frequencies is specified to be the
highest frequency. Within each test run, the highest fre-
quency varies from 50% to 100%, the second highest
from 30% to (100% — the highest frequency) if the highest
frequency does not exceed 70% and from 2/3 of
(100% - highest frequency) to (100% - highest frequency) oth-
erwise. Each frequency is varied at 1% increments. The
lowest frequency is the remaining amount:
(100% - the highest frequency — the second highest frequency).
Since actual results vary, we report on the percentage of

Highest Relative Percentage of Time W is highest | Percentage of Time Average W is highest

Frequency Order

Horizontal Single Group | Horizontal Single Group
Selection | fgo;>1010i>fjoin 45.20 1843 | 37.37 68.63 7.84 25.49
Selection se1=>Fioin > fproj 80.56 000 | 21.21 92.16 0.00 938
Project foroi™> s,,>f°in 0.00 100.00 0.00 0.00 100.00 0.00
Project £ r0i > Ljoin > Tsel 0.00 100.00 0.00 0.00 100.00 0.00
Join f?oin>fse1>fpmj 0.25 52.53 | 47.98 0.00 58.52 41.18
Join f’i,,i,,>f,m,i>f$el 0.00 100.00 0.00 0.00 100.00 0.00

Table 3. Test Run Results in Retrieval Environment

time a technique yields the highest total weighted value
and the highest average total weighted value which is
computed by averaging all total weighted values for all
combinations of the second highest and third highest fre-
quencies for each value of the highest frequency. In
Table 3 we present the results of six test runs. Each row
represents one test run. Regardless of the relative orders
chosen, if selection is the highest frequency, horizontal is
the clear cut winner. If projection or join has the highest
frequency, then single vertical always yields the best
results.

Figures 1a and 1b show the average total weighted
value for the first two orderings. The weighted values for
each value of the highest frequency are computed as the
average weighted values over all combinations of the
second and third highest frequencies. Figure la shows
that when selection has the highest frequency, and
feet > foroj > fjoins single vertical performs the best if the
selection frequency f, is below 53% of the total retrieval
frequency, group vertical performs the best if f,, is
between 53% and 66%, and horizontal exceeds the other
two techniques if f,, is more than 66%. If the relative
order, fi,>fj;,>f,; is chosen, in which join has higher
frequency than projection, Figure 1b shows that single
vertical is always the worst, and horizontal outperforms
group vertical when the selection frequency exceeds 53%.
Results for the two orderings in which project has the
highest frequency, showed that single vertical is always
the best regardless of the values of the project frequeney
and the orders between the join and select frequencies.
When join has the highest frequency, horizontal is always
the worst. If the select frequency is higher than the pro-
ject frequency, and if the join frequency is smaller than
70%, then group vertical exceeds single vertical. Single
vertical performs better than group vertical otherwise.
When the project frequency is larger than the select fre-
quency, single vertical is always the best.

prewp vare

L) segle vert

a) fsel > fx;roj > 1-,ioin

Examining these figures we note that there are
”jumps” in the average total weighted value that occur in
each graph when the highest frequency changes from
70% to 71%. This takes place because in our experiment,
when the highest frequency is less than or equal to 70%,
the second highest frequency varies from 30% to (100% -
the highest frequency) at 1% steps. When the highest
frequency exceeds 70%, the second highest frequency
varies from 2/3 of (100% - the highest frequency) to
(100% - the highest frequency) at 19 steps. In brief, the
"jumps” occur because the low limit of the second
highest frequency is forced to change from 30% to 2/3 of
(100% - the highest frequency) when the highest fre-
quency exceeds 70%.

Based upon the results discussed above, if only
retrieval transactions are used either horizontal or single
vertical is the technique of choice. If it is known that
selection occurs more often than other types of retrieval,
horizontal is the best in most situations. However the
results are not clear cut unless its frequency of occurrency
is quite high (over 70%). For lower values group vertical
or even single vertical may be better. However even in
these cases the difference between the three techniques is
small. The horizontal superiority is quite evident for
higher selection percentages. In retrieval environments
where project or join occur with the highes frequencies,
single vertical partitioning is the clear cut winner.

Update Environment

In this environment, we assume that the only tran-
sactions that can be processed are modify a tuple (fre-
quency fing), delete a tuple (f,4,), and insert a tuple
(funs)- The other transaction types never occur. Experi-
ments similar to those for the retrieval environment were
run to investigate the update transactions. In Table 4 we
present the results of the six test runs.

00
L pocisoatal
reup vere
20
iegle vert
© L] % 100

b) fse|>rioin>fproj

Figure 1. Effect of f,, on Average Total Weighted Value in Retrieval Environment

Highest Relative Percentage of Time W is highest | Percentage of Time Average W is highest
Frequency Order
Horizontal | Single Group | Horizontal Single Group
Tuple Modification | fyr0q4>fiine>figel 25.76 74.49 0.00 4314 58.86 0.00
Tuple Modification | fy 104> fiqe1>fiins 100.00 0.00 0.00 100.00 0.00 0.00
Tuple Deletion fiae1>> Fimod > fiins 100.00 0.00 0.00 100.00 0.00 0.00
Tuple Deletion ‘del > Ftins > fimod 70.45 3056 | 0.00 8431 17.65 0.00
Tuple Insertion fﬁm> tmod = Ltdel 0.00 100.00 0.00 0.00 100.00 0.00
Tuple Insertion tins = dtdel > fimod 0.00 100.00 0.00 0.00 100.00 0.00

Table 4. Results of Test runs in Update Environment

Figures 22, and 2b show the average total weighted
value outputs for the first two test rums. In Figure 2a
and Figure 2b, tuple modification is specified as the
highest frequency. If tuple insertion takes place more
often than tuple deletion, single vertical outperforms hor-
izontal when the tuple modification frequency is less than
78%, and horizontal outperforms single vertical otherwise
(Figure 2a). If tuple deletion occurs more often than
tuple insertion, Figure 2b shows that horizontal is always
the best. When tuple deletion frequency is the largest one
among all update frequencies, if the tuple modification
frequency is higher than the tuple insertion frequency
then horizontal is always the best. Otherwise, single vert-
ical performs better than horizontal when tuple deletion
does not exceeds 68%. The opposite result is obtained
when tuple deletion exceeds 68%. When tuple insertion
is designated to be the highest frequency, single vertical
always outperforms the other two techniques. These
three experiments also confirm our conclusion of the
group vertical: regardless of the values of the three fre-
quencies, this technique never becomes the best.

Again we see that the technique of choice is either
the horizontal or single vertical. When modification has
the highest frequency the choice is not obvious, although
for most cases horizontal is better. When tuple deletion
occurs the most, horizontal is the winner in most cases.
When tuple insertion is the highest frequency the single
vertical technique is the only choice.

porisoatal

piagie vert

roup vert

a’) ftmod >f$ins > ft.dcl

Schema Modification Environment

In this environment, the only transaction processed
is schema modification (frequency f,;pm0q). All other tran-
saction types never take place. The total weighted values
of the partitioning techniques are given as follows:

Wh = 1Ofschmod!
ws = 16fschmod!
Wg = 81 hmod-

Obviously, in this environment, the single vertical is the
best technique regardless of the value of the schema
modification frequency.

Mixed Environment

In this environment, all transaction types (1-7) are
processed. We divide the transaction types into three
subsets: retrieval, update, and schema modification. The
members of the retrieval subset are transaction types:
select a tuple, project attributes, and join two relations.
The update subset’s members are modify a tuple, delete a
tuple, and insert a tuple. The third subset has only one

o [————"

\f__d_,,, e v
o \/\
reup vert

b) Fimod>Teder™fiins

Figure 2. Effect of f,,,4 on Average Total Weighted Value in Update Environment

member: modify a schema. Let f,o, fypq, and fypmeq be the
frequencies of the subsets which are defined as follows:

f,

ret — fproj + fsel +

join?

fupd = f',mod + figer + fiinss

fyehmoq 1S the frequency of the schema modification
transaction type itself.

Since most of real database applications require
more retrievals than updates, ([10], [12]) and more
updates than schema modifications, it is reasonable for us
to assume the following order: f,,, > f,,9 > fopmog- In the
following paragraphs, we examine the impact of these fre-
quencies on the weighted values of the partitioning tech-
niques.

We designed a computer program to examine the
two cases:

1. Case 1: Examination of the effects of the
update frequency on the total weighted value,
given a retrieval frequency between 50% to 100%.
The update frequency varies from 30% to (100% -
the given retrieval frequency) at 1% steps.
2. Case 2: Examination of the effects of the
retrieval frequency on the total weighted value,
given an update frequency between 30% to 50%.
The retrieval frequency varies from 50% to (100%
- the given update frequency).
In both cases, the schema modification f,, .4 is calculated
as (100% - frec + fupd)'

In each test run of case 1 and of case 2, one of the
retrieval members is specified to have the highest
retrieval frequency. This member is called the highest
retrieval member. Similarly we specify the highest
update member. Within the retrieval subset, we then
have the highest, second highest, and third highest
retrieval members. The way we vary the values of these
members is the same as in the retrieval environment,
except that the total frequency now is not 100% but f,

ret*

R
400f
350/
poriseatal
300
roup vert
20|
1egle vert
» » » » ©

a) Effect of f,,4

Similarly, within the update subset, we have the highest,
second highest, and third highest members which are
varied the same way as in the update environment where
the total frequency is not 100% but f,,4. For each test
run, the program produces the same measures as for the
retrieval and update environments.

Figures 3a and 3b are two examples of test runs for
case 1 and case 2. Figure 3a shows the average total
weighted value of a test run for case 1 in which selection
and tuple deletion are chosen to be the highest retrieval
and update members. The relative orders used are
fo1>Fproj >Tjoin 204 fige>fimoa>fuin- The given retrieval
frequency is 60%. The x-axis represents the update fre-
quency which varies from 30% to 40%. In this test run,
horizontal outperforms single vertical and group vertical
regardless of the values of the update frequency. Figure
3b is obtained from a test run for case 2. The two rela-
tive orders fy;i > >fjoin a0d fp> 1140 >fimoq 2re selected.
The given update frequency is 40%. The x-axis shows
the retrieval frequency varying from 50% to 60%. In this
case, single vertical always performs the best.

Table 5 is constructed from test runs for case 1.
Although not shown here, similar results were found for
case 2. Examining this table, we see that either horizontal
or single vertical is the best technique. When selection is
the highest member of the retrieval subset, most of the
time horizontal performs better than single vertical if
either tuple modification or deletion is the highest update
member. Otherwise, if tuple insertion has the highest
update frequency, single vertical always outperforms hor-
izontal. When projection is the highest retrieval member,
regardless of the update members, single vertical is
always the best. When join has the highest retrieval fre-
quency, most of the time single vertical performs better
than horizontal. From these results, we conclude that in
general in a mixed environment, if we have more

selections than projections and joins, and more tuple
modifications or tuple deletions than tuple insertions,

‘\——_\-"J"h -

e ———— T Jrow vert

™ ”\/\/\
hortsoatal

b) Effect of f,

ret

Figure 3. Average Total Weighted Value in Mixed Environment

Highest | Highest Relative Retrieval | Best
Retrieval Update order Frequency | Technique
Member Member :
Selection | Modification el>f roj oine .tmod>f 'n5>ttdel 50%-79% | Single Vertical
Selection | Modification f‘ proj fjom, mod ins e] 80%-99% | Horisontal
Selection | Modification f" oin > [proj» ftm > w,l> 50%-90% | Horisontal
Selection | Deletion fl‘)l'ol f;om, tdel m Lma 50%-99% | Horisontal
Selection | Deletion oin roj .tdel ft 50%-99% | Horisontal
Selectfon Insertion gpm] ll;mn, _mm m tdel 50%-99% | Single Vertical
Selection | Insertion oin > fprojs ftins > ftdel > fimod | 50%-74% | Single Vertical
Selection | Insertion 1 F:m S ,o, [4ins el od | 76%-99% | Horisontal
Projection | Modification f:-o, 1> fp .t.mod ins > Lydel | 50%-99% | Single Vertical
Projection | Modification roj f'e ul' Lt bdel f”:inz 50%-99% | Single Vertical
Projection | Deletion f’l;l'ﬂj]5 in Ltdel m f:"u 50%-99% | Single Vertical
Projection { Deletion roi f';l selr m,l f:“:gf 50%-99% | Siagle Vertical
Projection | Insertion f’;,oj 915 ine m, m, 50%-99% | Single Vertical
Projection | Insertion pm f' D2 I 50%-99% | Single Vertical
Join Modification | frg) >[pr) off mod>'fi n,> 50%-99% | Single Vertical
Join Modification | fio; oin > f" ”‘, > f:‘del > 50%-99% | Single Vertical
Join Deletion fm o Mel f ving | 50%-99% | Single Vertioal
jo;l: z.:gs:. som f", u,, .t.del %f 50%-99% | Single Vertical
of rtion ou.\ el oj* tdel | 50%-99% | Single Vertical
Join lusertion__| {0 > 150> ..1. n...>f:4§$fg..w. 50%.90% | Single Vertical

Table 5. Results Based on Retrieval Frequency in Mixed Environment

the horlzon

lves the best performance.
single vert.lca

Otherwise,

Summary and Future Research

In this paper, we discussed different techniques one
can use to partition an MMDB: horizontal, group hor-
izontal, single vertical, physical vertical, group vertical,
and mixed partitioning. To determine which technique is
the best, in terms of the overall cost which consists of
both number of I/Os for reload and number of MM refer-
ences in transaction processing, we introduced eight pro-
perties. We analyzed each of these properties to find out
how the partitioning techniques compared to each other
for the property. We then ranked the partitioning tech-
niques for each property accordingly. In the final analysis,
we derived the weights for the properties based on the
frequencies of use of typical relational transaction types
which use the properties to determine their costs. The
total weighted value of each partitioning technique is
computed based on the weights of the properties and the
ranks of the the technique in these properties. The total
weighted values thus depend upon the frequencies of use
of transaction types in a database system. Given a data-
base system with the information on these frequencies, we
are always able to derive the total weighted values of the
partitioning techniques. The technique that has the
highest total weighted value is the desired one since it
requires the minimum overall cost in terms of number of
I/Os for reloading and number of MM references for
transaction processing. It therefore satisfies the goals of
structuring the main memory and archive memory.

Our analysis shows that horizontal and single verti-
cal are actually the only possible candidates. Physical
vertical never yields the highest total weighted value. In
some very rare cases, group vertical outperforms the
other techniques. If the database system encountered

performs more selections than projections and joins, and
performs more tuple modifications or tuple deletions than
tuple insertions then horizontal is the best technique to
use for partitioning the database. Otherwise, single verti-
cal is the chosen technique. Our analysis also shows that
if reload of the database from AM into MM is the only
concern, that is we do not take into account the transac-
tion performance, then single vertical is always the best
choice because it requires the fewest number of pages to
store a relation.

References

[1] Ceri, S., Navathe, S., A Methodology for Distribution
Design of Databases”, COMPCON 88, San Francisco,
March 1983.

[2] Ceri, S., Distributed Database Design, McGraw Hill,
1984.

[3] Chang, S., Cheng, W. ”A Methodology for Structured
Database Decomposition”, IEEE Transactions on
Software Engineering, Vol.SE-6, No.2, March 1980,
pp. 205-218.

[4] Cornell, D., Yu, P. ”A Vertical Partitioning Algorithm
for Relational Databases”, IEEE Data Engineering
Conference, May 1987, pp. 30-35.

[5] DeWitt, D., Katz, R., Olken, F., Shapiro, L., Stone-
braker, M., Wood, D., Implementation Techniques
for Main Memory Database Systems”, ACM SIG-
MOD, June 1984, pp. 1-8.

[6] Margaret H. Eich, “A Classification and Comparison
of Main Memory Database Recovery Techniques,”
Proceedings of the Third International Conference on

Data Engineering, Los Angeles, California, February
1987, pp 332-339.

[7] Margaret H. Eich, “Main Memory Database Research
Directions,” Proceedings of the 1989 International
Workshop on Database Machines, Deauville, France,
June 1989, pp 251-268. (Earlier version available as
SMU technical report 88-35.)

[8] Gruenwald, L., "Recovery in Main Memory Database
Systems”, PhD Dissertation, Southern Methodist
University, Department of Computer Science and
Engineering, 1990.

[9] Hagmann, R., ”A Crash Recovery Scheme for a
Memory Resident Database System”, IEEE Transac-
tions on Computers, Vol. C-35, No.9, September
1986, pp. 839-843.

[10] Joyce, J., Warn, D., ”Command Use in a Relational
Database System”, National Computer Conference,
1983, pp. 247-253.

[11) Lehman, T., Carey, M., A Recovery Algorithm for a
High-Performance Memory Resident Database Sys-
tem”, ACM SIGMOD, May 1987.

[12] Magalhaes, G., ”Improving The Performance of
Database Systems”, University of Toronto, Depart-

10

ment of Computer Science, Technical

CSRG-138, December 1981.

[13] Navathe, S., Ceri, S., Wiederhold, G., Don, Y. *Vert-
ical Partitioning Algorithms for Database Design”,
ACM Transactions on Database Systems, Vol.9,
No.4, December 1984, pp. 680-710.

{14] Rothnie, J., et al., "Introduction to a System for Dis-
tributed Databases (SDD-1)", ACM Transactions on
Database Systems, Vol.5, No.1, March 1980, pp. 1-
17.

Segev, A., "Optimization of Join Operations in Hor-
izontally Partitioned Database Systems”, ACM Tran-
sactions on Database Systems, Vol.11, No.1, March
1986, pp. 48-80.

Stonebraker, M., Neuhold, E., ”A Distributed Data-
base Version of INGRES”, Proceedings of the 3rd
Berkeley Workshop on Distributed Data Management
and Computer Networks, Lawrence Berkeley Lab.,
University of California, Berkeley, May 1977, pp.
19-36.

Report

[15]

[16]

