Reload in a Main Memory Database System: MARS

Le Gruenwald, Margaret Eich

Department of Computer Science and Engineering
Southern Methodist University

Abstract,

In a main memory database, the primary copy of the
database may be stored in a volatile memory. When
a crash occurs, a complete or partial reload of the
database from archive memory to main memory
must be performed. It is essential that an efficient
reload scheme be used to ensure that the expecta-
tions of high performance database systems are met.
This paper introduces different complete reload algo-
rithms that aim at fast response time of transactions
and high throughput of the overall system.

Introduction

Recently, with memory costs decreasing, storage
capability increasing, and the need for high perfor-
mance database systems rising, many researchers
have been examining the problem of designing Main
Memory Database (MMDB) systems [1,2,3,4,5].
MARS(MAin memory Recoverable database with Stable
log) is a MMDB system designed at Southern Metho-
dist University {6]. It assumes that the primary copy
of the database is in main memory (MM) and that
an archwe database existing on secondary storage
(AM) is used solely as a backup in the event of
main memory media failure or system failure. The
log is assumed to exist both on disk and in a stable
memory buffer. All updates take place in a stable
memory which acts as a shadow memory. At com-
mit time, after image records (AFIM) are copied
from the shadow memory to MM. A database pro-
cessor (DP) is used to handle normal database pro-
cessing, while a recovery processor (RP) is used to
perform recovery processing activities.

TH0307-9/90/0000/0174$01.00 © 1990 IEEE

174

In a MMDB system, such as MARS, the primary
copy of the database may be stored in a volatile main
memory. When a crash occurs because of system
failure or main memory media failure, a complete or
partial reload is needed to load the database from
archive memory into main memory. Even though
this reload process does not take place frequently, it
could become a major bottleneck during processing.
Performance impediments are mainly caused by two
problems: down time and page faults. While the sys-
tem is down, no transactions can be processed.
According to [7], there are many applications that
could use 1000 transactions per second. If our
reload process takes one hour to complete, then in
this environment there could be 3,600,000 transac-
tions backlogged if the entire database must be
reloaded before bringing the system up. This figure
is intolerable in a high performance system. If we
choose to bring the system online before the reload
process completes, we then will encounter another
serious problem: page faults caused by referencing
data not yet loaded.

Our objective is to develop a reload scheme that
aims at fast response time of transactions and high
throughput of the overall system. In this paper we
introduce two reload algorithms and analyze their
advantages and disvantages. These algorithms are
developed based on the MARS model. Note that at
present, there is no reload scheme that is in use on

MARS.

Below is the list of terminologies and their meanings
that will be involved in the discussion of the algo-

t+ This material is based in part upon work
supported by the Texas Advanced Research
Program (Advanced Technology Program)
under Grant No. 2265.

rithms: Reload Preemption: reload of some data is
suspended and replaced by reload of some other
data; Reload Granularity: the smallest unit of data to
be reloaded. During the reload of this unit, no
reload preemption is allowed; Reload Prioritization:
priority of data to be reloaded. This indicates which
data will be reloaded first and which data will be
reloaded next; Reload Threshold: a variable specifies
the amount of the database that must be memory-
resident before the system can be brought online.

Ordered Reload with Prioritization Algorithm

This algorithm does not use access frequency; but
does consider reload prioritization and preemption.
Its goal is to reload data that is needed immediately
before other data so that the system can be brought
up before the entire database is reloaded and transac-
tion response time can be reduced. The algorithm
consists of the following steps:

o Step 1: identify waiting transactions and their
needed pages. Group these pages according to
cylinders. Waiting transactions include not-yet-
committed transactions and backlogged transactions
when the system was down.

o Step 2: reload system pages into MM on a cylinder
basis. This means that cylinder 1’s of all disks are
reloaded in parallel (system pages are assumed to be
stored on cylinder 1’s).

e Step 3: reload the rest of the database based on
the following prioritization until the reload threshold
is reached: (1) Priority 1 (highest): reload pages
needed by waiting transactions on a cylinder basis;
and (2) Priority 2: reload the rest of the cylinders on
all disks according to the order they are stored on
disks, starting from the block pointed by the head of
each disk.

o Step 4 (performed by the database processor (DP)
in parallel with step 3 which is performed by the
recovery processor (RP): copy to the shadow
memory all AFIM records of committed transactions
which are recorded on the log from the second to
last begin checkpoint. All these AFIM records are
assoclated with a special recovery transaction.

e Step 5: bring the system up when the reload thres-
hold is reached.

o Step 6: reload the rest of the database based on
the following prioritization until the entire database
is in MM: (1) Priority 1 (highest priority): reload
pages needed by executing transactions on a demand
basis. Executing transactions are those which arrive
after the system resumes its execution. A cylinder is
chosen to be our reload granularity, therefore the
reload will not take place until the cylinder which is
being reloaded is completely memory resident; (2)

175

Priority 2: same as priority 1 in step 3; and (3) Prior-
ity 3: same as priority 3 in step 3. Note that in this
step, reload preemption is in effect: the reload of a
lower priority is preempted by the reload of a higher
priority to ensure that data that is needed immedi-
ately is brought into MM before other data.

e Step 7: commit the special recovery transaction to
copy all AFIM records mentioned in step 4 to MM.

Following are the tradeoffs of this algorithm: Advan-
tages: (1) only a portion of the database needs to be
reloaded before the system can resume its execution,
(2) reload prioritization and reload preemption are
taken into account which allow executing transac-
tions to be given immediate attention. This might
lead to an improvement in system throughput and
transaction response time, and (3) the reponse time
of waiting transactions is reduced since data needed
by them are reloaded before data that is not needed
by any transactions; Disadvantages: (1) more compli-
cated implementation is required to control the
reload prioritization and reload preemption, and (2)
identification of waiting transactions and their
needed pages adds an overhead to the reload process.

Smart Reload Algorithm

This algorithm considers prioritization, preemption,
and access frequency. Its purpose is not only to
reload data that is needed immediately before other
data but also to reload data that is accessed more fre-
quently before data that is accessed less frequently.
Its motivation is to take the advantages of hot spots
which have been demonstrated to exist in some data-
base applications ([8,9]). A hot set (or hot spot) is a
subset of the database that is frequently accessed.
Examples of hot sets are a data dictionary, file
indices, summary data (company totals), extremely
active accounts, and bank balances in debit/credit
transactions [10].

Reloading the hot sets first should reduce the
number of page faults, and thus reduce response
time of subsequent transactions. This leads us to the
development of a priority reload algorithm that
makes use of frequency access to predict future
reference. This algorithm does not attempt to
predict what will be referenced next, instead it relies
on the hot set concept to guarantee that the data
reloaded is that with the highest probability of being
referenced among data in the archive memory.

In this algorithm, the access frequency of each page
(block) is assumed to be available. At any point in

time, except for the case of demand reload, the most
frequently accessed page is searched and reloaded
into MM. Blocks are not organized on AM in either
increasing or decreasing order of access frequency.
Therefore, we choose a block to be the reload granu-
larity. Besides these differences, The rest of the
algorithm is exactly the same as the ordered reload
with prioritization algorithm.

This algorithm has all advantages and disadvantages
of the ordered reload with prioritization algorithm plus
the following: Advantages: (1) since only one block
instead of an entire cylinder needs to be reloaded in
order for a reload preemption to take place, the wait-
ing time of executing transactions might be shorter;
and (2) the more frequently accessed pages are
reloaded before the less frequently accessed pages
except for the case of demand reload. This might
reduce the number of page faults, which in turn will
lead to a higher system throughput; Disadvantages:
(1) Extra overhead is incurred due to frequency
count calculation; (2) more stable memory is needed
to store the access frequency information. (3)
searching for the highest frequency page among all
the pages to reload imposes an extra overhead on the
reload process; and (4) the block reload granularity
requires more seek time and latency time than the
one incurred in the cylinder reload granularity. This
might lead to a longer total reload time.

Summary and Conclusions

In this paper, we introduced two different algorithms
to perform a complete reload of data from AM into
MM when a system crash occurs: ordered reload with
prioritization, and smart reload. The first algorithm
uses a cylinder as its reload granularity and does not
take the access frequency into consideration. The
second algorithm uses a block as its reload granular-
ity and makes use of access frequency. Both algo-
rithms allow the system to be brought online before
the entire database is reloaded and implement the
same priority reload scheme: the highest priority is
given to data needed by executing transactions, the
second highest priority to data needed by waiting
transactions, and the last priority to the remaining
data. Reload of data of lower priority is preempted
by reload of data of higher priority to achieve faster
system response time.

In the next phase of this research, we intend to con-
duct a simulation on MARS using the Winconsin
benchmark to find out which algorithm is the best in
terms of total reload time, system throughput, and
transaction response time. The results of this simu-

176

lation will be reported in the literature.

References

[1] Ammann, A., Harahan, M., Krishnamurthy, R.
"Design of a Memory Resisent DBMS", Proceedings of
the IEEE Spring Computer Conference, 1985, pp. 54-
57.

[2] Hagmann, R. "A Crash Recovery Scheme for a
Memory Resident Database System", IEEE Transac-
tions on Computers, Vol. C-35, No. 9, Sept 1986, pp.
839-843.

[3] DeWitt, D., Katz, R., Olken, F., Shapiro, L.,
Stonebraker, M., Wood, D. "Implementation Tech-
niques for Main Memory Database Systems",
Proceedings of the 1984 ACM SIGMOD Conference,
June 1984, pp. 1-8.

[4] Garcia-Monila, H., Lipton, R., Honeyman, P,
"A Massive memory database system", Princeton
University, Department of Electrical Engineering and
Computer Science, Technical Report, Sept 1983.

[5] Lehman, T., Carey, M. "A Recovery Algorithm
for a High- Performance Memory Resident D atabase
System", Proceedings of the 1987 ACM SIGMOD,
1987.

(6] Eich, M., "MARS: The Design of a Main
Memory Database Machine", Proceedings of the Inter-
national Workshop on Database Machines, ICOT, Oct.
1987, pp. 468-481.

[7] Gray, J., Good., B., Gawlick, D., Homan, P,
Sammer, H. "One Thousand Transactions Per
Second”, Tandem Computers, TR 85.1, Nov. 1984.

[8] Chou, H., DeWitt, D., "An Evaluation of Buffer
Management Strategies for Relational D atabase Sys-
tems", Proceedings of the International Conference on
Very Large Data Bases, 1985, pp. 127-141.

[9] Sacco, M., Schkolnick, M. "Buffer Management
in Relational Database Systems", ACM Transactions
on Database Systems, Vol. 11, No. 4, Dec. 1986, pp.
473-498.

[10] Gawlick, D. "Processing Hot Spots in High Per-
formance Systems", Proceedings of the IEEE Spring
Computer Conference, 1985, pp. 249-251.

