DATABASE PARTITIONING TECHNIQUES
TO SUPPORT RELOAD IN A MAIN MEMORY DATABASE SYSTEM: MARS

Le Gruenwald

Margaret H. Eich

Department of Computer Science and Engineering
Southern Methodist University
Dallas, Texas 75275

ABSTRACT

In a main memory database system, the primary copy of the
database may be placed in volatile memory. When a crash
occurs, a partial or complete reload of the database from
archive memory (AM) into main memory (MM) is needed.
To effectively perform the reload process without degrading
the system performance, the most effective technique for
structuring AM and MM should be determined. This paper
reports on experiments performing a complete analysis of
possible partitioning techniques in terms of the number of
1/Os for reload and number of MM references incurred dur-
ing transaction processing. Our analysis shows that horizontal
and single vertical partitioning are actually the only possible
candidates. Which one is best depends on the types of tran-
sactions executed.

Introduction

Recently, with memory costs decreasing, storage capa-
bility increasing, and the need for high performance database
systems rising, many researchers have been examining the
problem of designing Main Memory Database (MMDB) sys-
tems [1]. MARS(MAin memory Recoverable database with
Stable log) is a main memory database system designed at
Southern Methodist University. It assumes that the primary
copy of the database is in main memory and that an archive
database existing on secondary storage is used solely as a
backup in the event of main memory media failure or sys-
tem failure.

In a MMDB system, such as MARS, the primary copy
of the database or a major portion of the database may be
placed in a volatle memory. When a crash occurs, a partial or
complete reload of the database from archive memory (AM)
into main memory (MM) is needed. This reload process has
a severe impact on the performance. Performance impedi-
ments are mainly caused by two problems: down time and
page faults. When the system is down, no transactions can
be processed. Page faults caused by referencing data not yet
loaded are encountered if the system is brought online
before the reload process completes. The goal of our ongo-
ing research is to derive an effective way to perform the
reload process without degrading transaction performance.
One of the steps to achieving this goal is to examine how
data can be stored on AM and MM.

* This material is based in part upon work supported by the Texas
Advanced Research Program (Advanced Technology Program)
under Grant No. 2265.

CH2728-4/90/0000/0107$01.00 © 1990 IEEE

107

The objective of this paper is to examine the effect of
different database partitioning techniques on the MMDB
reload problem and, subsequently, derive the best technique
to structure the AM and MM. The best technique is one

‘that yields the minimum overall cost in terms of the number

of I/O needed for reload and transaction processing time.

The paper is organized as follows. In section 2, possible
partitioning techniques are introduced. Section 3 describes
the overall approach we take to perform our analysis. Sec-
tions 4 and 5 contain the analysis. The paper is concluded in
section 6.

Database Partitioning Techni

Many database partitioning techniques have been
developed to physically organize data on storage devices.
Each technique divides the data into groups which are then
assigned to physical pages. We classify these into the follow-
ing six categories: horizontal partitioning, group horizontal
partitioning, single vertical partitioning, physical vertical par-
titioning, group vertical partitioning, and mixed partitioning.

Horizontal partitioning subdivides a relation to form
groups of tuples without taking tuple affinity into account.
Each group contains a number of complete tuples. Due to its
simplicity this technique has been used as a conventional
storage structure.

The group horizontal partitioning technique decomposes
a relation into groups of tuples based on their affinity.
Tuples that are more frequently used together are placed in
the same group. This technique has been implemented in
several distributed database systems such as SDD-1 [2].

Single vertical partitioning focuses more on references
to single attributes without considering attribute affinity. It
vertically subdivides a relation into groups each of which
contains only one type of attribute. This technique has been
used in several database systems, such as ADABAS, to phy-
sically store their secondary keys [3].

In the physical vertical partitioning technique, each
tuple is divided into physical groups of fixed sizes that are
independent of attribute length. This technique has not been
implemented in any database systems. The reason we con-
sider it for MARS is due to its uniformity to all relations.

Group Vertical partitioning subdivides attributes of a
relation into groups based on affinity. Attributes that are
commonly required together are physically stored together.
This technique has been extensively studied in a variety of
computing environments (4], [5].

Mixed partitioning is introduced to take advantages of
both horizontal and vertical partitioning [6]. Partitions of
data are constructed by either applying group horizontal to
physical/group vertical partitioning or vice versa. SDD-1
uses this technique to partition its database {2].

The group horizontal and mixed partitioning techniques
are excluded from our analysis for MARS due to the high
CPU cost needed for tuple affinity calculation. More discus-
sion on this is given in [7].

Analysis Approach

The analysis of the database partitioning techniques is
performed based on the eight properties that cover the data-
base design and the query processing stages: 1) number of
‘physical pages required to store an entire relation, 2) cost to
store a relation into the main memory, 3) cost to delete an
attribute from a schema, 4) cost to insert an attribute into a
schema, 5) cost to project attributes in all tuples from a
given relation, 6) cost to select a tuple from a given relation,
7) cost to insert a tuple into a relation, and 8) cost to modify
some attributes within a specified tuple. The first property
estimates the number of 1/Os for reloading while the rest of
the properties measure the number of MM references
incurred during transaction processing.

These eight properties are complete in that they can be
used to derive the cost (based on memory references and
I/O requirements) for any type of transaction. In the follow-
ing list we include in parenthesis following the type of data-
base operation, a list of the properties used to estimate the
cost of that operation: project attributes from a relation
(1,5), select a tuple (6), modify a tuple (8), delete a tuple
(6), join two relations (1,5,6), modify a schema (2,3,4), and
insert a tuple (7).

We examine each property individually and then rank
the six partitioning techniques based on their ability to satisfy
the property, that is based on the cost incurred. A ranking of
6 indicates that this technique yields the lowest cost for that
property, and ranking of 1 indicates that it yields the highest
cost for that property. For a particular property, a technique
with a ranking of 6 is the best technique, and the one with a
ranking of 1 is the worst one.

After the rankings are done, a weight associated with
each property which indicates how important the property is
in transaction performance and in reloading is derived.

"How important” here means the frequency of the property
in contributing its cost to the transaction processing and
reloading cost. The most important property has the highest
weight. The total weighted value of each database partition-
ing technique is determined as fol]ows:s
total weighted value =Y wir;

i=1
where w; is the weight associated with property i, and r; is the
ranking of the technique for the property i. The technique
that yields the highest total weighted value is the choice for
structuring the main memory and archive memory.

Analyais of The Eight P .

Analyzing the eight properties based on the number of
main memory references incurred by each partitioning tech-
nique, and using our ranking system with the highest rank
for the best technique, we obtain the results in Table 1.
Horizontal, Single, Physical, and Group stands for horizon-

108

tal, single vertical, physical vertical, and group vertical
respectively. Due to space limitations, the detailed analysis

of each of the eight properties is not shown here. The
interested reader is referred to [7].
Table 1. Ranking of Partitioning Techniques
Cost Horizontal | Single | Physical | Group
Number of Pages 2 4 1 3
Implementation 3 4 2 1
Attribute Deletion 2 4 1 3
Attribute Insertion 3 4 2 1
Attribute Access 1 4 2 3
Tuple Selection 4 1 2.5 2.5
Tuple Insertion 1 4 2.5 2.5
Tuple Modification 4 3 1.5 1.5
Total Analysis

In this section, we give a total analysis of all six parti-
tioning techniques to identify the technique which yields the
lowest overall cost. The technique that has the highest total
weighted value W incurs the lowest overall cost. Recall that

8
W is defined as W = Y wir;, where w; is the weight of the pro-

]
perty i, and r; is the rank of the property i. We use W,, W,,
W,, and W,, to indicate the total weighted value for horizon-
tal, single vertical, physical vertical, and group vertical parti-
tioning respectively. Ranks are the results of the analyses of
the eight properties (Table 1). Weights are determined
based on the frequencies of use of typical relational transac-

tions. The weight of each of the eight properties is

computed as the sum of the frequencies of use of all transac-

tion types which use the property to determine their process-

ing costs. For example, if the property i is used to deter-

mined the cost of n transaction types, then the weight w; of

property i is the sum of the frequencies of use of all n tran-
n

sactions: w; = Y f; where f; is the frequency of use of transac-
=1

tion type j.

The total weighted values for the database partitioning

techniques are obtained as follows:

Wy = 3fpruj + 4fgqr + 4imoa + 4igel + 7fjoin + 10fschmod + 3fiins

wa = E"‘m‘oi + fvel + 3funod + rtdel + 9fj\:in + 16flchmud + Sfﬁnx

W, = 30,004 2.5f0e+ 1.5fumoat 2.5uaert 5-5fi0ia+ 6fpechmoat 3-5funs
Wy = 6f,54 2.5fpe1+ 1.5fumoat 2-5fuaert 8-5fj0in+ 8fachmodt 5.5fkns
Since W, < W,, physical vertical partitioning is not the best
technique in any case. We therefore exclude it from further
analysis.

We divide the transaction types into three subsets:
retrieval, update, and schema modification. The members of
the retrieval subset are transaction types: select a tuple, pro-
ject attributes, and join two relations. The update subset’s
members are modify a tuple, delete a tuple, and insert a
tuple. The third subset has only one member: modify a
schema. Let f, fupq, and f,umea be the frequencies of the
subsets which are defined as follows:

frei = fproi + fsel + t.joiu

f\\yd = funod + Tuter + funs
fyehmod 1S the frequency of the schema modification transac-
tion type itself. Since most real database applications require
more retrievals than updates and more updates than schema
modifications, it is reasonable for us to assume the following
order: fres > fupa > fochmod-

We designed a computer program to examine the two

cases:

1. Case a: Examination of the effects of the update fre-

quency on the total weighted value given a fixed retrieval

frequency between 50% to 100% The update frequency

varies from 30% to (100% - the given retrieval frequency)

at 1% steps.

9. Case b: Examination of the effects of the retrieval fre-

quency on the total weighted value given a fixed update

frequency between 30% to 50% The retrieval frequency

varies from 50% to (100%- the given update frequency).
In both cases, the schema modification f,qmea is calculated as
(100%' fret + fupd)'
The relative orders among retrieval and update frequencies
studied by the program are fyu > foro; > fiow (S1),
foer > fjoin > 1‘proj (S2)y fpmj > fyq > fio'm (Pl)l fpmj > fjcin > feel

(P2)y 1‘juin > flzl > fpmj (Jl): f,')ain > fproj > ful (‘]2))
fimod > fiins > fidel (M1), fimod > fidet > fiins (M2),
fuer > fimoa > fuins (D1), fuger > funs > fimoa (D2)

ft'ms > 1.tmod > fulel (Il): and fﬁnu > fldel > funotl (12)

For each value of f,, and of f,,, the program deter-
mines two types of output: the percentage of time a parti-
tioning technique gives the highest total weighted value for
each combination of the member frequencies (type 1), and
the percentage of time a partitioning technique gives the
highest average total weighted value computed by averaging
all total weighted values for all combinations of the member
frequencies (type 2).

From all possible test runs for case a, we derive Table
2. The results of test runs for case b can be found in {7].
The technique that has the highest output of type (1) is the
best technique under the conditions of the particular test
run. If two techniques have the same or similar outputs of
type 1, then the one that has the higher output of type (2) is
chosen to be the best one.

Table 2. Results Based on Retrieval Frequency

Highest [Highest Relative |Retrieval |Best
Retrieval |Update order |Frequency|Technique
Member |Member

Selection |Modification |S1, M1 |509%-79% |Single Vertical
Selection |Modification |S1, M1 |80%99% |Horizontal
Selection |Modification |S2, M2 [509%-99% |Horizontal
Selection |Deletion S1, D1 |50%99% |Horizontal
Selection |Deletion S2, D2 {50%99% |Horizontal
Selection |[Insertion S1, 11 |509%99% |Single Vertical
Selection |Insertion S2, 12 [509%74% |Single Vertical
Selection |Insertion S2, 12 |75%99% |Horizontal
Projection |Modification |P1, M1 |50%99% [Single Vertical
Projection |Modification |P2, M2 |50%99% |Single Vertical
Projection [Deletion P1, D1 |50%99% |Single Vertical
Projection | Deletion P2, D2 |50%99% |Single Vertical
Projection |Insertion P1, 11 [50%99% |Single Vertical
Projection |Insertion P2, 12 |50%99% |Single Vertical
Join Modification |J1, M1 |509599% |Single Vertical
Join Modification |J2, M2 |509%-99% |Single Vertical
Join Deletion J1, D1 [50%99% |Single Vertical
Join Deletion J2, D2 [50%99% |Single Vertical
Join Insertion J1, 11 [50%99% |Single Vertical
Join Insertion J2, 12 [50%99% |Single Vertical

From the results of all test runs, we see that either hor-
zontal or single vertical is the best technique. When sclee-
tion is the highest member of the retrieval subset, most of
the time horizontal performs better than single vertical if
either tuple modification or deletion is the highest update
member. Otherwise, if tuple insertion has the highest
update frequency, single vertical usually outperforms hor-
izontal. When projection is the highest retrieval member,
regardless of the update members, single vertical is always
the best. When join has the highest retrieval frequency,
most of the time single vertical performs better than hor-
izontal. We conclude that if we have more selections than
projections and joins, and more tuple modifications or tuple
deletions than tuple insertions, then horizontal gives the best
performance. Otherwise, single vertical does.

Conclusions

In this paper, we examine the effect of different parti-
tioning techniques on the MMDB reload problem in terms of
the number of I/Os for reload and number of MM refer-
ences during transaction processing. The best technique is
the one that yields the minimum overall cost consisting of
both properties. Our analysis shows that horizontal and sin-
gle vertical are actually the only possible candidates. Physical
vertical never yields the best result. In some very rare cases,
group vertical outperforms the other techniques. If the data-
base system encountered performs more selections than pro-
jections and joins, and performs more tuple modifications or
tuple deletions than tuple insertions then horizontal is the
best technique. Otherwise, single vertical is the chosen tech-
nique. Our analysis also shows that if reload is the only con-
cern, that is if we do not take into account the transaction
performance, then single vertical is always the best choice.

References

T. Lehman and M. Carey, "A Recovery Algorithm for a
High-Performance Memory Resident Database System",
SIGMOD, 1987.

J. Rothnie et al., "Introduction to a System for Distri-
buted Databases (SDD-1)", ACM Transactions on Data-
base Systems, Vol.5, No.1, p. 1-17, March 1980.

P. Pratt and J. Adamski, Database Systems Management
and Design, Boyd and Fraser Publishing Company,
1987.

S. Navathe, et al., "Vertical Partitioning Algorithms for
Database Design", ACM Transactions on Database Sys-
tems, Vol.9, No.4, p. 680-710, Dec 1984.

D. Cornell and P. Yu, "A Vertical Partitioning Algo-
rithm for Relational Databases”, IEEE Database
Engineering, p. 30-35,1987.

S. Ceri, Distributed Database Design, McGraw Hill, 1984.

L. Gruenwald and M. Eich, "Database Partitioning
Techniques to Support Reload in a Main Memory Data-
base System: MARS", Technical Report 89-CSE-31,
Southern Methodist University, June 1989.

(2]

(3]

(4]

(5]

(6]
(7]

