IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998 859

Correspondence

Effects of Update Techniques on Main
Memory Database System Performance

Le Gruenwald, Member, IEEE Computer Society,
YuWei Chen, and Jing Huang

Abstract—Update technique is an important issue related to
database recovery. In a main memory database environment,
transaction execution can be processed without any 1/O, and all I/O
operations involved are for recovery purposes. The efficiency of
update techniques therefore has an important impact on the
performance of main memory database systems. In this paper, we
compared the techniques of immediate and deferred update based
on a database machine, MARS. The simulation results showed that
immediate update outperforms deferred update unless system
failure is a frequent occurrence.

Index Terms—Main memory databases, update, failure recovery,
transaction processing, simulation.

<+

1 INTRODUCTION

Two commonly known update techniques in a database system
are immediate update and deferred update. The immediate update
approach allows database modifications made by a transaction to
be output to the database while the transaction is still in an active
state. Deferred update keeps changes in a separate area until a
successful completion of the transaction is assured, at which time
the modifications are applied to the database. It is generally agreed
that the deferred update approach offers a poor performance in
disk-resident databases (DRDBs) and immediate update is com-
monly used [6]. However, not much research has been done in
main memory database systems (MMDBs) where the entire or a
major portion of the database is memory-resident. A major differ-
ence between an MMDB and a DRDB is that transactions in an
MMDB commit their results in main memory while transactions in
a DRDB commit on disk. Thus, in an MMDB, 1/0 operations in-
curred in performing update policies are reduced tremendously,
especially for deferred update, compared with that in a DRDB
system. Update polices may behave differently in MMDBs. It is
therefore necessary for us to re-examine these two policies in the
new environment.

In this paper we conduct a simulation study based on the
MMDB system, MARS [2] to evaluate the performance of the two
update approaches in an MMDB in the presence of a system crash.
The outline of this paper is as follows. Section 2 presents the sys-
tem assumptions and the recovery algorithm used in this study.
Section 3 describes our simulation model and parameter settings.
Section 4 analyzes the simulation results and, finally, Section 5
summarizes the paper.

+ The authors are with the School of Computer Science, University of
Oklahoma, 200 Felgar St., Rm. 114 EL Norman, OK 73019.
E-mail: gruenwal@cs.ou.edu.

Manuscript received 20 July 1995; revised 4 Mar. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104328.

1041-4347/98/$10.00 © 1998 IEEE

2 SYSTEM ASSUMPTIONS AND RECOVERY ALGORITHM

MARS (MAin memory Recoverable database with Stable log) [2]
is the main memory database system that we have simulated.
It assumes that the entire database resides in a volatile main
memory (MM), while its backup copy is kept in an archive mem-
ory (AM) residing on secondary storage. Transaction processing
is manipulated by the Database Processor (DP) and recovery ac-
tivities including logging, checkpoint, and recovery are handled by
the Recovery Processor (RP). The log buffer is stored in the non-
volatile or stable memory and is large enough to contain all up-
dates of active transactions.

With immediate update, modified pages may be propagated to
the primary database at any time. Hence, in order to make failure
recovery possible, Before Images (BFIMs) are saved in a log file
before they are overwritten by After Images (AFIMs). The commit
processing of transactions is trivial. However, to abort a transac-
tion, the RP needs to rollback all of its actions. Both UNDO and
REDO operations are required at the time of a system crash. With
deferred update, modified data is kept in the log until a successful
completion of the transaction performing the updates is assured.
Since no dirty pages are propagated to disks, only AFIMs need to
be logged for REDO purposes.

Fuzzy checkpoint [5], which does not require the system to
be quiescent during the checkpoint process, is assumed in this
work. In order to reload the database into MM after a crash, the
frequency reload algorithm is used. This algorithm is selected
as it yields the best system performance in terms of transaction
response time and system throughput compared with other reload
algorithms proposed in [3]. In frequency reload, data is reloaded
according to some priority order and the system resumes its
execution when a certain amount of the database is memory-
resident. It takes reload prioritization, preemption, and access
frequency into account. The detailed description of the algorithm
can be found in [4].

3 DESCRIPTION OF THE SIMULATION MODEL

The simulation model used to evaluate the performance of the
two update techniques is based on those constructed in [3], which
are written in the simulation language SLAM 11 [7]. In order
to investigate the behavior of the immediate update and deferred
update schemes in both cases, with and without a system failure,
at least 20,000 transactions are executed and the 95 percent confi-
dence intervals are obtained. The width of the confidence interval
of each data point is less than 5 percent of the point estimate.
The performance metric measured is average transaction re-
sponse time, which includes times needed for transaction proc-
essing, resource waiting, logging, commit, and UNDO (for imme-
diate update only).

In our simulation, transaction arrival rates are exponentially
distributed. The size of a transaction is determined by the num-
ber of operations it executes, which is distributed uniformly
between 5 and 30. Transaction concurrency control is accom-
plished through conservative two-phase locking [1]. Since each
transaction performs operations on pages, a page-level lock
granularity is chosen.

All the simulation parameters, which are mostly adopted from
existing literature, are listed in Table 1 and Table 2. The default
values of these parameters, such as MM_ACCESS, CPU_POWER,
disk parameters, are selected based on the DEC 3000 Model
400/400S AXP Alpha machine and Micropolis 22000 disk’s drives,

860

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

TABLE 1
DYNAMIC PARAMETERS
Parameter Default Value Range Parameter Default Value Range

Number of AM disks 2 1to5 Database Size 1,800 600 to 5,400 pages

Write Probability 20% 0% to 100% Read Probability 80% 100—Write Probability

Multiprogramming Level 10 1to 20 Transaction Abort Rate 3% 0% to 40%

TABLE 2
STATIC PARAMETERS
Parameter Meaning Value Parameter Meaning Value

SM_ACCESS Access an SM word 0.000198 ms || SM_SEAR SM address translation 0.5* MM_ACCESS
ALLOC_TM Allocate a MM page 0.005 ms MM_SEAR MM address translation 3* MM_ACCESS
AMREQ_TM Request an /O from AM 0.00143 ms || PRETRAM Preprocess a transaction 0.0072 ms
RELEASE_TM Release an MM page 0.005 ms PREOP Preprocess an operation 0.000007 ms
BMAP_TM Read until 1 in bit map 0.02957ms || ET_TM End transaction 0.0054 ms
MM_ACCESS Access an MM word 0.00018 ms || INTIO_TM Initiate log 1/0 0.0014 ms
REC_SZ (deferred) SM or log record 12 bytes LOGPG_SzZ Log page size 2,000 bytes
REC_SZ (immediate) | Log record 16 bytes WORD_SZ Bytes per word 4 bytes
BLOCKS_CYL Blocks per Cylinder 30 LOGIO_TM Write a log page 5.624 ms
TRACKS_CYL Tracks per Cylinder 15 CYLS_AM Cylinders per Disk 30
TRANSFER Transfer time 7.46 ms SEEK Average seek time 10.0 ms
INDN_TM Initial down time 5.0 ms LATENCY Average latency 5.56 ms
LOCK/UNLK_TM Get/release one lock 0.0007 ms HASH_TM Hash AM directory 0.0007 ms
SIGNAL_TM DP signals RP for a page fault 0.0007 ms CPU_POWER | CPU_POWER 140 MIPS

since they accommodate high performance applications. The de-
tailed explanations of the parameters can be found in [4].

4 SIMULATION RESULTS AND DISCUSSIONS

In this section, we present the simulation results which best
illustrates the system performance. Fig. 1 illustrates how transac-
tion arrival rate affects transaction response time before a system
crash. It is obvious that when transaction arrival rate is high,
the system is overloaded by a huge number of transactions
striving to access a limited number of resources, transaction re-
sponse time increases accordingly. In Fig. 1, the simulation result
shows that immediate update outperforms deferred update when

—— Deferred
—&— Immediate

30 50 70 90 110
Transaction Arrival Rate

Response time before crash

Fig. 1. Transaction arrival rate vs. transaction response time before crash.

there is no system crash. This is because in deferred update, a
transaction commit involves accessing the SM and creating log
records in the log buffer, while in immediate update, after finish-
ing all operations successfully, a transaction can commit immedi-
ately. A higher workload in a transaction commit accounts for a
higher transaction response time in deferred update during nor-
mal transaction processing.

In order to determine how much overhead database recovery
will impose on normal transaction processing, we observed aver-
age transaction response time during different time intervals after
a crash. This is because of the fact that the recovery process has
more impact on transactions that arrive right after a system failure
than those that come later and the effect of recovery overhead is

20000
15000
10000

5000

0 L L
1000 2000 3000 4000

—l— Deferred
—&— Immediate

i
5000 6000

Response time after crash

Transactions Committed After System Crash

Fig. 2. Time interval after system crash vs. transaction response time.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998 861

- 68

5 66 = = —"

S 644

% 6.2 1

5] 6 -

g 584

2 56X A A A —A

g 54 4 —l— Deferred

% 52 4 —h— Immediate

m 5 T T T 1
6000 8000 10000 12000 14000

Transactions Committed After System Crash

Fig. 3. Time interval after system crash vs. transaction response time.

Response Time After Crash

54 + === TIMNE
—&—defer
53 +
52 } i i
0.1 0.14 0.18 0.2

Transaction Abort Rate

Fig. 4. Transaction abort rate vs. transaction response time.

diminished as the time passes. The results obtained show that
deferred update performs better than immediate update only
during a very short time interval after system recovery (Fig. 2);
however, when the system resumes its normal and stable state,
immediate update behaves better than deferred update (Fig. 3).

We also conducted a testing case to examine how transaction
abort rate affects the performance of the two update policies. The
simulation results indicated that when the transaction abort rate is
lower than 15 percent, immediate update yields better transaction
response time than deferred update does (Fig. 4).

5 CONCLUSIONS

We examined the performance of the two update algorithms,
immediate update and deferred update, in a main memory data-
base system MARS. Our results indicated that the immediate up-
date policy provides a better average response time for normal
transaction processing when the transaction abort rate is
lower than 15 percent. In the existence of a system crash, due to
less log information that needs to be processed during recovery
time and the use of a stable memory, deferred update enables
the system to resume earlier than immediate update does, which
finally results in a faster average response time. However, when
the system is back to a stable state after a system crash, immediate
update again outperforms deferred update. As transaction abort
rate is usually lower than 5 percent in conventional database
systems, the choice of an update scheme depends only on system
failure rate. We can therefore draw the following conclusion: In
MMDBs, unless system failure is a frequent occurrence, immediate
update should be used.

ACKNOWLEDGMENTS

This material is based, in part, on work supported by the National
Science Foundation under Grant No. IR1-9201596.

REFERENCES

[1] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Con-
trol and Recovery in Database Systems, Addison-Wesley, 1987.

[2] M.H. Eich, “MARS: The Design of a Main Memory Database Ma-
chine,” Proc. Int’l Workshop Database Machines, Oct. 1987.

[3] L. Gruenwald and M.H. Eich, “MMDB Reloading Algorithms,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 397-
405, June 1991.

[4] L. Gruenwald et al., “Evaluation of Reloading and Paging in Main
Memory Database Systems,” J. Brazilian Computer Soc., special is-
sue on database systems, vol. 2, no. 3, pp. 24-35., Apr. 1996.

[5] R.B. Hagmann, “A Crash Recovery Scheme for a Memory-
Resident Database System,” IEEE Trans. Computers, vol. 35, no. 9,
pp. 839-343, Sept. 1986.

[6] V. Kumar and A. Burger, “Performance Measurement of Main
Memory Database Recovery Algorithms Based on Update-in-
Place and Shadow Approaches,” IEEE Trans. Knowledge and Data
Eng., vol. 4, no. 6, pp. 567-571, Dec. 1992.

[71 A. Alan and B. Pritsker, Introduction to Simulation and SLAM I,
System Publishing, 1986.

