
 1

POWER AWARE MANAGEMENT OF MOBILE REAL-TIME DATABASE
TRANSACTIONS IN AD-HOC NETWORKS

Le Gruenwald

Shankar M. Banik

University of Oklahoma
School of Computer Science

Norman, OK 73019
(ggruenwald@ou.edu; smbanik@ou.edu)

Abstract

In an ad-hoc mobile network architecture, all mobile hosts (MHs) are connected with each other
through a wireless network that has a frequently changing topology. This type of architecture is used in
many applications such as battlefields and disaster recovery where it is difficult or not feasible to depend
on a static wired communication infrastructure. These applications are usually time-critical where
many of their transactions must not only be executed correctly but also within their deadlines. In
addition, the MHs in this environment are not connected to unlimited power supplies and may store data
that can be shared by other MHs. Existing mobile database transaction management techniques do not
consider the ad-hoc network characteristics, real-time constraints, and energy limitation. This paper
reviews these existing techniques, identifies issues that need to be addressed in this new environment, and
propose approaches for solutions.

1. INTRODUCTION

Advances in connectivity and wireless communications have revolutionized the computer

industry. Connectivity has enabled software available on independent systems at different locations to

cooperate in order to provide a wider spectrum of services to users. Wireless communication technology

makes it possible to extend these services to nomadic users. Mobile MultiDatabase Management Systems

(MMDBMSs) are those that provide services to allow nomadic users to access databases conveniently and

efficiently. Transaction Manager (TM) is a vital component of any MMDBMS. TM is responsible for

providing reliable and consistent units of computing to its users. The wireless communication mediums

introduce new issues that need to be addressed by the TM, i.e., frequent disconnection and migration.

Unlike in wired systems, disconnection in wireless systems cannot be treated as catastrophic failures that

result in aborted transactions. When a disconnection occurs, TM needs to determine the status of the user,

 2

and if reconnection is expected, the transaction must not be aborted. However, even if reconnection is not

expected, aborting a transaction should be postponed as long as possible as the status of the user can only

be predicted. Also, a disconnected user may resume execution from a different location. Disconnection

and migration prolong the execution time of transactions resulting in a higher probability of conflicts with

other transactions. Thus, it is necessary to ensure that transactions of mobile users are not penalized due

to their extended execution time. This means that Long-Live Transactions (LLT) must be supported.

Limiting MMDBMSs to purely ACID (Atomicity, Consistency, Isolation, Durability) transactions has

also been argued. Because it is expected that enforcing ACID to MMDBMS may lead to too many aborts

which will result in a system that is perfectly consistent but gets only a small fraction of useful work done

[Dunham, 1997]. This dictates that MMDBMSs will need to support a range of correctness criteria. In

addition, any solution should conform to multidatabase design restrictions, i.e., the autonomy of the local

databases should not be violated.

There are two typical mobile computing architectures. In the General Mobile Computing

Architecture, there is a fixed Mobile Support Station (MSS) that supports all mobile hosts (MHs) roaming

within its cell. When an MH moves out of a cell and enters a new cell, it can no longer communicate

with the previous cell’s MSS, and is under the control of the new cell’s MSS. All MSSs communicate

with each other via a fixed network. In the second architecture called an Ad-hoc Mobile Network

Architecture, all MHs are roaming and the network that interconnects these MHs is a wireless network

with a frequently changing topology, and there are no fixed infrastructure and fixed MSSs. This second

kind of architecture is widely used in battlefields and in disaster recovery situations ([Hong, 1999][Liu,

1999]).

Much research in the area of mobile database transaction management was based on the first

architecture ([Dunham,1997], [Madria,1998], [Dirckze,2000]), while none on the second one.

Supporting database transaction services in an ad-hoc mobile network raises new issues. If an MH stores

a database, then other MHs will try to submit transactions and get data from it. In this environment both

the user and the data source will be moving. So finding a route from one MH to another MH is necessary

 3

before submitting a transaction. Moreover applications like battlefields are time-critical which require

their transactions to be executed not only correctly but also within their deadlines. Thus the Transaction

Manager at the MH where the database is stored has to consider the mobility of the submitting MHs as

well as the deadlines of the transactions. Another important issue in ad-hoc networks is power or energy

restriction on MHs because MHs are not connected to direct power supplies and many of them are small

and low-power devices. So energy-efficient solutions are needed for this environment.

The objectives of this paper are to provide the state of the art of mobile database transaction

management, identify deficiencies of these techniques in terms of support for ad-hoc networks, real-time

constraints, and energy efficiency, and propose a direction to find solutions to resolve these issues. The

paper is organized as follows. Section 2 describes the Ad-hoc Mobile Network Architecture. Section 3

reviews some of the most recent mobile transaction management techniques. Section 4 presents our

solution direction. Finally Section 5 concludes the paper.

2. ARCHITECTURE

In ad-hoc networks, MHs communicate with each other without the help of a static wired

infrastructure. These types of networks are usually used in battlefields ([Hong, 1999][Liu,1999]). So we

have defined our architecture considering the battlefield environment as illustrated in Figure 1. Depending

on communication capacity, computing power, disk storage, size of memory and energy limitation, MHs

in the proposed network architecture can be classified into two groups: 1) computers with reduced

memory, storage, power and computing capabilities (e.g. soldiers equipped with portable computing and

transceiver devices), which we will call Small Mobile Hosts (SMHs), and 2) classical workstations

equipped with more storage, power, communication and computing facilities than the SMHs, which we

will call Large Mobile Host (LMHs). These LMHs can be classified into two subgroups – humvees and

tanks. Humvees have high capacity communication links and relatively stable. Tanks have less storage,

computing and energy capacities and move more often than humvees. Both humvees and tanks are more

 4

static than SMHs [Liu 1999]. Soldiers (i.e. SMHs) can communicate with tanks and humvees via wireless

LAN technology. One soldier can talk to several humvees or tanks at the same time.

Every MH has a radius of influence. In Figure 1, a circle with borders in dotted line represents the

radius of influence of an MH. An MH can directly communicate with other MHs which are within its

radius of influence. That means two MHs can communicate with each other if each MH is within the

radius of influence of the other MH. The communication link between two MHs shown with dark dotted

lines in Figure 1 means both the MHs can communicate with each other. In our proposed environment, if

two MHs are outside each other's radius of influence, they will be able to indirectly communicate with

each other in multiple hops using other intermediate MHs between them [Bandyopadhay, 1999]. For

example, in Figure 1, SMH 11 will not be able to communicate directly with LMH 3 because LMH 3 is

residing outside the radius of influence of SMH 11, but it can indirectly communicate in multiple hops

using SMH 10 and SMH 9 between them.

MHs in battlefields are not connected to unlimited power supplies and thus have energy

limitation. To reduce energy consumption, the MHs can operate in three modes - Active mode, Doze

mode and Sleep mode.

1. Active Mode: The MH performs its usual activities. Its CPU is working and its

communication device can transmit and receive signals.

2. Doze Mode: The CPU of the MH will be working on a lower rate. It can examine

messages from other MHs. The communication device can receive signals. So the MH can

be awaken by a message from other MHs [Barbara, 1994].

3. Sleep Mode: Both the CPU and the communication device of the MH are suspended.

Due to energy and storage limitations, we will assume that only LMHs will store the whole Data

Base Management System (DBMS) and SMHs will store only some modules of the DBMS (e.g. Query

Processor) that allow them to query their own data, submit transactions to LMHs and receive the results.

 5

Figure 1: Architecture

3. REVIEW OF EXISTING MOBILE TRANSACTION MANAGEMENT TECHNIQUES

The Kangaroo model proposed in [Dunham, 1997] is based on the Open Nested model and

captures the movement behavior of MHs. A global transaction (referred to as a Kangaroo transaction)

consists of a set of Joey transactions, each consisting of all operations executed within the boundaries of

one MSS. Each Joey transaction consists of one or more sub-transactions, and therefore, does not allow

arbitrary migration that may occur in the middle of a sub-transaction. Joey transactions may be committed

independently. Kangaroo transactions execute in two different modes: Compensating mode and Split

mode. Under the Compensating mode, the failure of any Joey transaction causes all committed Joeys to

be compensated and any other active Joeys to be aborted. Under the Split mode, all committed Joeys will

not be compensated and the decision to commit or abort any active Joeys is left up to the component

DBMSs. These modes provide a full spectrum of Atomicity. However, under the Split mode, component

DBMSs may be left in an inconsistent state. Neither mode enforces the Isolation property. This model

does not infringe upon the autonomy of any local DBMS.

 LMH_1

(Humvees)

 LMH_4
 (Tanks)

 SMH_1
(Soldier)

 LMH_3
 (Tanks)

 SMH_2
(Soldier)

 SMH_3
(Soldier)

 SMH_4
(Soldier)

 SMH_5
(Soldier)

 SMH_9
(Soldier)

 SMH_6
(Soldier) SMH_7

(Soldier)
 SMH_8
(Soldier)

SMH_13
(Soldier) SMH_10

(Soldier)
SMH_11
(Soldier)

SMH_12
(Soldier)

 LMH_2

(Humvees)

 6

The Pre-Commit model proposed in [Madria, 1998] introduces a pre-read, pre-write, and pre-

commit operation to address the issues of mobile computing. Transactions of mobile users read or pre-

read data values, manipulate the data that have been read and then pre-write modified values at the MH.

Once all pre-write values have been declared, the transactions pre-commit at which point, all pre-write

values are transmitted to the MSS. The MSS will then complete the transactions. After the pre-commit

stage, the remaining part of execution of a transaction is shifted to the stationary host. Thus it reduces the

computing cost at the MH. A pre-write does not update the state of the physical data object but only

declares its modified value. Once a transaction pre-commits, its pre-write values are written to a pre-write

buffer maintained in the MSS and are made visible to other concurrent transactions executing at that MH

and the respective MSS. A transactions read will return a pre-read value if the latest value available has

not been written to the database yet; otherwise, the value residing in the database (read value) will be

returned. All pre-committed transactions are guaranteed to commit by the MSS. This transaction model

does not address disconnection that represents catastrophic failures. It addresses the concurrency

limitation caused by the extended duration of mobile transactions by maintaining a pre-write buffer and

making the pre-write values visible upon pre-commit. However, the pre-write values are visible only to

those transactions that are executing in that MH or MSS. This technique violates local autonomy as

transactions are pre-committed by the MSS which guarantees that the pre-committed transaction will not

be aborted; this cannot be achieved without the unilateral cooperation of the local databases. This

technique enforces strict Atomicity and strict Isolation.

In the PSTM technique proposed by [Dirckze, 1998,2000], the Global Transaction Manager

(GTM) consists of two layers: the Global Transaction Coordinator (GTC) which resides at each MSS, and

the Site Transaction Manager (STM) which resides at each local database site. All local databases are

connected to a fixed network. When an MH submits a global transaction to the GTC, the GTC creates a

global data structure to supervise the overall execution of the global transaction. Then it submits all sub-

transactions of the global transaction and their compensating transactions to the corresponding sites. The

STM at each site supervises the execution of site transactions submitted at that site. After the completion

 7

of each site transaction, the STM informs the GTC of the status of the site transaction. Global transactions

of MHs are classified as LLTs (Long lived Transactions) and global transactions of static users are

classified as non-LLTs. For a non-LLT, the GTC will execute the Partial Global Serialization Graph

(PGSG) Algorithm to verify the Atomicity and Isolation properties of the non-LLT after its execution. If

the properties are not violated the global transaction is committed; otherwise it is aborted. For LLT, the

GTC will execute the PGSG at the end of its vital phase. If the properties have not been violated, it is

toggled and its execution continues; otherwise it is aborted. If an MH migrates to a new cell, the MH will

inform the new MSS of the identity of the previous MSS. The GTC of the new MSS will obtain the whole

global data structure from the previous MSS and will be responsible for the execution of the global

transaction of this user. If a user disconnects, its status is marked as disconnected but its transactions are

not halted. But if the GTM determines that a catastrophic failure has occurred, then they are halted and

marked as suspended. Suspended transactions are not aborted until they obstruct other global transactions.

This technique takes care of the Disconnection and Migration issues of Mobile Database systems. It does

not violate the autonomy of the local database sites. It enforces the Atomicity and Isolation properties of

transactions.

All the above reviewed techniques are based on the General Mobile Computing Architecture. So

they address the mobility of users only. But in an ad-hoc mobile network environment the servers that

store the data sources are also MHs; there are no fixed MSSs. And the precise positions of the users and

the data sources cannot be located in advance. So before submitting a transaction, an MH has to find the

MH which has the data. After processing the transactions the MH has to find the requester and submit the

results. So routing should be a part of transaction management in our environment. From the energy

point of view, since all MHs will be running on limited power, they can go into the doze mode or sleep

mode at any time to reserve energy. The reviewed techniques do not address the energy-related issues

(e.g. if an MH goes into the doze mode then how the MSS will take care of the transaction submitted by

that MH). In our environment the LMHs can also go into the doze mode and sleep mode and are different

 8

from the MSSs which are servers with unlimited power. The techniques also do not deal with real-time

transactions. Associating deadlines with transactions will have an impact on each of the proposed

techniques. We will need a Real Time Transaction Scheduler and a commit protocol which takes

transaction types (firm and soft) and transaction deadlines into consideration in order to minimize the

number of transactions that must be aborted due to deadline violations. An efficient sub-transaction

deadline assignment is also needed to carefully distribute global transactions’ deadlines among their sub-

transactions. In summary, none of the reviewed techniques can be applied directly to our proposed

environment.

4. PROPOSED SOLUTION APPROACHES

4.1 Key Information Stored at Mobile Hosts

In our presented architecture, each MH will store some key information in its local database. The

ID field will uniquely identify an MH. Every MH will get its coordinates from GPS (Global Positioning

Scheme) [Ko, 1998] periodically and store them in the Position field. This position information will be

used at the time of routing a transaction from a source MH to a destination MH. Each MH will also store

the its Radius of transmission range in its local database. The Energy_availability field will record the

amount of energy available at that time. This information is needed to identify the MH with the highest

available energy at any point in time.

Apart from the above information, each LMH will maintain a Global Schema, which is the

integration of all local schemas from all LMHs. It will also store the corresponding ID of the LMH for

each local schema. This Global Schema is required to identify which data object is stored in which LMH.

Each SMH and LMH will maintain a field LMH_List which records the Position, ID and

Energy_availability of each LMH. The LMHs will periodically broadcast their ID, Position and

Enery_availability, and the SMHs and other LMHs will update their local databases after listening to the

broadcast channel. SMHs will use the LMH_List to identify the nearest LMH and the LMH with the

 9

highest available energy when needed. The key information stored at LMHs and SMHs are described in

Table 1.

LMH SMH Description

ID ID Unique Identifier
Position Position Coordinator (obtained using GPS)
Radius of Influence Radius of Influence Radius of transmission range
Energy_availability Energy_availability Energy available at that point of time
Global_Schema ------------- Integration of all local schemas at each LMH and the

corresponding ID of the LMH.
LMH_List LMH_List ID, Position and Energy_available of each LMH.

Table 1: Key Information Stored at Mobile Hosts

4.2 Transaction Property and Classification

In our real-time environment, transactions have deadlines and are classified into two categories:

firm and soft [Gruenwald, 1997,1999]. Firm transactions must be aborted if they miss their deadlines

while soft transactions still can be executed after their deadlines have expired. For firm transaction, the

value of the transaction becomes zero after the deadline expires. From the value function describing tasks

with soft deadlines in [Abbott, 1988], we can define soft transactions with two deadlines. A soft

transaction still can be executed after its first deadline expires, but its value decreases after the first

deadline and becomes zero after the second deadline. For example, in a battlefield environment, querying

the position of enemy can be treated as a soft transaction with two deadlines. Since the position of the

enemy will be changing frequently in this environment, the value of this transaction will decrease over

the period of time and will become zero after a certain time period. Each transaction also has an attribute

that records its run time estimate.

4.3 Transaction / Data Flow between MHs

In our architecture, there can be different types of transaction flows between the LMHs and the

SMHs. The first case is when an SMH submits an entire transaction (from begin to commit) to an LMH

 10

before it moves. The LMH executes the transaction and returns the results to the requesting SMH. This is

the simplest case. The second case will be if we remove our assumption, that is, the SMH submits some

sub-transactions of the transaction to an LMH and then moves to some other place. An LMH can also

submit sub-transactions to other LMHs. Since the SMHs are not storing the whole DBMS in our

architecture, we are not considering the transaction flow between two SMHs. But they will be able to

communicate and send/receive messages to/from each other. Since routing in a mobile ad-hoc network

uses multi-hops, an SMH can be a transaction initiator or a transaction forwarder. But the LMH can be a

transaction initiator or a transaction forwarder or a transaction executer.

4.4 Transaction Management

Our proposed transaction management approach addresses the first case of transaction flow, i.e.,

the SMH will submit the entire transaction to the LMH before it moves. The transaction flow has two

parts addressing how an SMH submits a transaction to an LMH and how an LMH executes a transaction

submitted by an SMH and returns its result to the SMH.

4.4.1 How an SMH submits its transactions to an LMH

Since in our architecture, MHs have energy limitation and transactions have timing constraints,

we need to have a transaction management policy that reduces the overall energy consumption while at

the same time reduces the number of transactions that must be aborted due to missing their deadlines.

Here we consider time as the most important factor in handling firm transactions and energy in handling

soft transactions. So the SMH will submit its firm transactions to the nearest LMH so that the transactions

can meet their deadlines. But for soft transactions, the SMH will submit them to the LMH which has the

highest available energy. Here we are sacrificing the first deadlines of soft transactions in favor of energy

consumption because soft transactions can still be executed after their first deadlines have expired. Thus

when an SMH initiates a transaction, first it will check the type of the transaction. If the transaction is a

 11

firm transaction, it will search the field LMH_List in its local database to find the Position and ID of the

nearest LMH. Then it will find the route to this nearest LMH using some route discovery scheme. Here we

can use the LAR Scheme 2 proposed in [Ko, 1998] because this technique uses only the position of the

destination to find the route, and the local database of each SMH will store the position of each LMH.

After finding the route, the SMH will submit the transaction along with its own Position and ID to the

corresponding LMH using this route. The LMH needs the Position and ID of the requesting SMH in order

to submit the result of the transaction after execution.

Now if the nearest LMH is in the active mode, it will receive the transaction and start processing

the transaction. If it is in the doze mode, it will receive the transaction and examine the type of the

transaction. If the transaction is firm, it will wake up and start processing the transaction in order to

reduce the chance that the transaction will miss its deadline. After processing the transaction it will

submit the result to the requesting SMH. But if the LMH is in the sleep mode, it will not be able to receive

the transaction. In this case the requesting SMH will wait for some time period. If it does not receive the

result of the transaction in this time period, it will assume that the nearest LMH is either in the sleep mode

or disconnected. So it will again check its local database to find the next nearest LMH, find a route to this

LMH and submit the transaction. The SMH can determine the length of the time period from the runtime

estimate of the transaction, communication overhead and possible delay due to disconnection. If the

transaction is soft, the SMH will find the Position and ID of the LMH with the highest available energy by

searching the LMH_List in its local database. Then it will find a route to this LMH and submit the

transaction to it. Again after waiting for a certain time, if the SMH does not get the result of the

transaction, it will search the local database to find the LMH with the next highest available energy. If the

requesting SMH moves after submitting a transaction to an LMH, it will inform the LMH of its new

position. The algorithm is captured in Figure 2.

 12

Let the Transaction be T1 with type T1_type, deadline T1_d, and runtime estimate T1_e.
Let the position of the requesting SMH be SMH_Position
Begin
 SMH initiates a transaction T1 with type T1_type, deadline T1_d and runtime estimate T1_e.
 Mark all LMHs in the LMH_List as not visited.
 While SMH has not received the result of T1 do
 Search the LMH_List.
 If T1 is a firm transaction
 Get the Position and ID of the LMH which is the nearest to the SMH and not yet visited.
 Else // T1 is a soft transaction
 Get the Position and ID of the LMH which has the highest energy available and not yet visited
 End if
 Find a route to the found LMH using LAR Scheme 2 [Ko, 1998].
 Submit T1 to the found LMH (SMH_ID, SMH_Position, T1, T1_type, T1_d, T1_e).
 Set WaitingTimePeriod = value. // maximum time for SMH to wait for the result
 While WaitingTimePeriod is not equal to 0 and SMH has not received the result of T1
 If SMH has not received the result of T1 // the found LMH is in the sleep mode //
 If T1 is a firm transaction
 If T1 missed its deadline
 Abort T1
 End if
 End if
 Mark the found LMH as visited
 Else
 Send an acknowledgement to the found LMH
 End if
 End while
 End while
 End

Figure 2. SMH Execution Algorithm

4.4.2. How an LMH executes a transaction submitted by an SMH and returns its result to SMH

An LMH can receive two types of transactions: global transactions from an SMH or sub-

transactions from other LMHs. Each LMH has three parts:

a. Transaction Scheduler (TS): schedules all global transactions and sub-transactions.

b. Transaction Coordinator (TC): divides the global transaction into sub-transactions and

submits them to corresponding LMHs, and returns the results to the requesting MH.

c. Transaction Manager (TM): manages the execution of sub-transactions.

After receiving a transaction from an SMH, if the LMH is in the active mode, it will pass the

transaction to the TS. If the LMH is in the doze mode, it will check the type of the transaction. If the

transaction is firm, it will wake up and pass the transaction to TS. But if the transaction is soft, the LMH

 13

will not wake up. Here we are sacrificing soft transactions for energy consideration because the LMH will

usually go into the doze mode to reserve its energy, and for soft transactions, they still will be executed

after they missed their first deadlines.

The TS at LMH will use a real-time energy-efficient dynamic scheduling algorithm (discussed in

Section 4.4.3) to schedule transactions. The scheduling algorithm will organize the transactions in a queue

that reflects their priorities of execution. Each time the LMH receives a new transaction (global

transaction or sub-transaction), the TS schedules the transaction and places it in a proper position in the

queue. Then the first transaction from the queue is taken by the TC. The TC checks the required data

items for this transaction after consulting the Global Schema . If all the data items required by the

transaction are available in this LMH, it will pass the transaction to its TM because the transaction is a

local transaction. If all the data items are not available in this LMH, the TC will find the LMHs which

contain the required data items from the Global Schema . Then it will divide the global transaction into

sub-transactions and distribute the deadline of the global transaction among the sub-transactions using a

deadline distribution algorithm. Here we can use the EQF Strategy proposed in [Kao, 1993] since it has

been shown to perform better than other techniques. The type of the sub-transactions (i.e. firm or soft)

will be the same as that of the global transaction. The transaction coordinator will find the routes to LMHs

and submit the corresponding sub-transactions to them.

If we assume that the databases at LMHs are homogeneous, then we can use the two-phase

commit protocol [Gray, 1993] to commit or abort the global transactions. But this protocol is two

restrictive for a real-time mobile environment because the sub-transaction at each site has to wait for the

decision of the TC for committing or aborting the transaction, and in the mobile environment, there will

be frequent disconnections. So the TC can be in the disconnected state or can go into the doze mode or

sleep mode. As a result there will be transaction blocking at the sites where the sub-transactions are

executed. Moreover, it does not take care of deadlines of transactions. A lower priority transaction can

block the data item which is required by a higher priority transaction and the higher priority transaction

 14

can miss its deadline. During the time a site is waiting for the TC to make a global commit/abort

decision, its sub-transaction may miss its deadline.

If the databases at LMHs are heterogeneous, we can adopt the PGSG Algorithm from PSTM

Model [Dirckze, 1998,2000] presented in Section 3. But we have to tailor it for our environment with

energy, ad-hoc networks, and real-time considerations. The requesting SMH has to define the vital and

non-vital [Chrysanthis,1993] sub-transactions when it submits a transaction to an LMH. In that case the

coordinator LMH (TC) will wait for the completion of all vital sub-transactions. If all the vital sub-

transactions are completed, it can run the PGSG Algorithm [Dirckze,1998,2000] to verify the

Atomicity/Isolation (A/I) properties. If the A/I properties are verified, then the LMH can decide to commit

the transaction and submit the result to the requesting SMH. But if the A/I properties are violated and the

transaction has not yet missed the deadline (for soft transactions second deadline), the LMH will restart

the transaction. But if the A/I properties are violated and the transaction has missed the deadline (for soft

transaction second deadline), the LMH will decide to abort the transaction and send the result to the

requesting SMH.

After the TC has decided to commit a transaction, it will find a route (using LAR Scheme 2) [Ko,

1998] to the requesting SMH for submitting the result of the transaction. If the requesting SMH is in the

active mode, it will receive the result and send an acknowledgement. If it is in the doze mode, it will

examine the type of the transaction. If the transaction is firm, then in order to meet the deadline of the

transaction the SMH will wake up, receive the result and send an acknowledgement to the LMH. But if the

transaction is soft, it is up to the SMH whether the SMH should come into the active mode and receive the

result or remain in the doze mode in order to reserve its energy for firm transactions. Another alternative

for the soft transaction could be that the SMH will calculate the remaining slack time for the transaction

using the equation (Slacktime = d – t) [Abbott, 1992] for deciding how long it can wait to receive the

result, where ‘d’ is the deadline of the transaction and ‘t’ is the current time. The slack time indicates

how much time a transaction has left before it misses its deadline. The SMH will wait until the slack time

is less than some time period value. Then it will wake up, receive the result and send an

 15

acknowledgement. In the second approach, the deadline of the soft transaction is penalized in order to

reserve energy in the requesting SMH because the SMH can receive the result of the soft transaction after

its first deadline has expired. The value of the waiting period can be determined from the energy level of

the requesting SMH. If the energy level of the SMH is sufficient, then the value of the waiting period will

be less.

If the requesting SMH is in the sleep mode, it will not be able to receive the result. So if the TC of

the LMH which has processed the transaction does not receive any acknowledgement till the deadline of

the transaction, it will assume that the requesting SMH is in the sleep mode. Then it will check the type of

the transaction. If the transaction type is firm, it will abort the transaction because a firm transaction has

no values after its deadline has expired. But if the transaction type is soft and the requesting SMH is in the

sleep mode, TC will calculate the slack time for the second deadline of the transaction. If this slack time

is zero, it will abort the transaction. If it is not zero, it will divide the slack time into some time intervals

and will submit the result again to the requesting SMH during those intervals. The motivation behind this

technique is that since the transaction is soft and it consumes sufficient energy to transmit, the LMH will

not continuously keep sending the result to the sleeping SMH and lose its energy. The length of the time-

interval will depend on the remaining slack time of the transaction and the energy level of the LMH. If the

energy level is low, the interval will be large and the number of transmissions will be small. The LMH

execution algorithm is captured in Figure 3.

Begin
 LMH receives a transaction T with ID T_ID, transaction type T_type, deadline T_d, Runtime estimate T_e,

Requester ID R_ID, Requester position R_pos, Requester energy R_energy, Data item List L.
 Schedule (T_ID, T_type, T_d, T_e, R_energy) and take the first transaction from the queue.
 (Let the first transaction be Tf with id Tf_ID)
 Check Tf_ID of the transaction.
 If Tf_ID is for a sub-transaction // Tf is a local transaction
 Execute the sub-transaction.
 Submit the result to the coordinator LMH.
 Else // Tf is a global transaction
 Search the global schema.
 Get the LMH_list for Data item List L.
 Divide the Global Transaction into sub-transactions.
 (Refer to this list of sub-transactions as S_list)
 Distribute deadline Tf_d among S_list using EQF Strategy [Kao,1993].

 16

 For each LMH in the LMH_list
 Find a route to LMH using LAR Scheme 2 [Ko, 1998]
 Submit the corresponding sub-transaction from S_list to this LMH
 End for
 Wait until all the vital subtransactions are completed
 Run PGSG Algorithm [Dirckze, 1998,2000].
 If PGSG Algorithm's outcome is to abort Tf due to A/I violations

If slack time of Tf is greater than 0 // For soft transactions, calculated using second
 // deadline
 Restart Tf by executing this LMH execution algorithm again
 Else
 Abort Tf
 Send the result to requesting SMH
 End If
 Else // PGSG Algorithm's outcome is to commit Tf

 Submit result to the requesting SMH
 While LMH has not received an acknowledgement (Ack) from requesting SMH

and slack time of Tf is greater than 0 do
 If LMH has received an Ack
 Remove transaction from active transaction list
 End if
 End while
 If LMH has not received an Ack from requesting SMH // SMH is in sleep mode
 If Tf_type is firm
 Abort the transaction.
 Submit result to requesting SMH
 Else // Transaction type is soft
 Find the slack time using the second deadline

 If slack time =0
 Abort the transaction
 Submit result to requesting SMH
 Else
 Divide the slack time into i intervals
 While this loop has not been executed i times and LMH has
 not received an Ack from requesting SMH do
 Submit the result to the requesting SMH
 Set WaitingTimePeriod = interval

// maximum time that LMH waits
// for an Ack from requesting SMH

 While LMH has not received an Ack and
 WaitingTimePeriod≠0 do

 If LMH has received an Ack from requesting SMH
 Commit transaction
 Remove transaction from

active transaction list.
 Submit result to requesting SMH
 End if.
 End while
 End While
 End if
 End if
 End if
 End if
 End if
 End
 Figure 3 : LMH Execution Algorithm

 17

4.4.3 Scheduling Algorithm

An LMH will be receiving transactions from SMHs and other LMHs. It has to assign priorities

among transactions in order to schedule them. In our environment the scheduling algorithm has to

consider not only transaction types (firm and soft), transaction deadlines, but also the energy limitations

of the MHs. Here we can use the Least Slack (LS) cognizant technique proposed in [Abbott, 1992] with

certain modifications with respect to energy constraints, disconnections and transaction types. In the LS

technique, transaction with less slack time is scheduled before transaction with more slack time. In our

scheduling algorithm, first we will sort all the transactions with respect to their slack times irrespective of

their transaction types. Here to calculate the slack times, we will use the equation used in [Abbott, 1992]

with certain change. The slack time, ‘s’ of a transaction can be calculated using the following equation,

s = d – (t + c + Pd*Td) … …. … …. (1)

where ‘d’ is the deadline, ‘t’ is the current time, ‘c’ is the runtime estimate, ‘Pd’ is the probability of

disconnection during execution and ‘Td’ is the average time loss due to disconnection. Now if two firm

transactions have the same slack time, then a higher priority will be given to the one whose requester has

less amount of available energy. The reason is that because the requester which has less energy will

exhaust its energy earlier, it is better to schedule its transactions earlier. We assume that MHs while

submitting their transactions/sub-transactions to the LMH will also send their energy-level to the LMH.

The same technique will be adopted if two soft transactions have the same slack time. If the slack time of

a firm transaction is equal to the slack time of a soft transaction, then a higher priority will be given to the

firm transaction considering that firm transaction will be aborted if it misses the deadline. Now if the

slack time of a soft transaction is found to be negative, then its slack time will be recalculated considering

its second deadline. If the recalculated slack time is again found to be negative, then the transaction will

be discarded. The algorithm is captured in Figure 4.

 18

Begin
 Calculate the slack time for all transactions using Equation 1.
 Sort all the transactions according to their slack times.
 Assign higher priorities to transactions with shorter slack times.

If two firm transactions or two soft transactions have the same slack time
Then give priority to the one whose requesting MHs has less energy.

 End if
 If the slack time of a firm transaction is equal to the slack time of a soft transaction
 Then give a higher priority to the firm transaction.
 End if
 If the slack time of a soft transaction is negative
 Recalculate the slack time using its second deadline and equation 1.
 End if
 If the recalculated slack time of a soft transaction is negative
 Discard the soft transaction.
 End if
End

Figure 4. Energy-Efficient Real-Time Transaction Scheduling Algorithm

5. CONLUSIONS

In this paper, we have introduced an architecture for a real-time mobile ad-hoc environment that

typically exists in battlefields and disaster recovery situations. We have addressed the new issues i.e.

mobility of servers and users, time criticalness and energy limitations related to transaction management

for this environment. We have also given partial solutions to these issues. More detailed study of

transaction management for this environment is required. For example, we need to determine how long

an SMH should wait after submitting its transactions to an LMH to determine the mode of the LMH, how

an SMH should deal with its own data, and whether a cache should be used at an SMH to improve the

performance of transactions it has initiated. Another important issue in environments like battlefield is

that there will be some transactions which cannot be compensated. So we need to treat this type of

transactions in a different way. As part of our future work, we will develop a complete transaction

management technique to solve all the addressed issues. Then we will build a simulation model to analyze

the performance of our technique in terms of energy optimization in mobile hosts and number of

transactions meeting their deadlines.

 19

REFERENCES

[Abbott, 1988] Abbott R., H. Garcia -Molina, “Scheduling Real Time Transactions”, SIGMOD RECORD,
Vol. 17, No. 1, March 1988.

[Abbott, 1992] Abbott R., H. Garcia -Molina, “Scheduling Real Time Transactions: A Performance
Evaluation’, ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

[Bandvopadhvav, 1999] Bandyopadhyay, S., and K. Paul, “Evaluating the Performance of Mobile Agent-
Based Communication among Mobile Hosts in Large Ad-Hoc Wireless Network”, MSWIM 1999.

[Barbara, 1994] Barbara D., T. Imielinski, “Sleepers and Workaholics: Caching Strategies in Mobile
Environments”, ACM SIGMOD, may 1994.

[Chrysanthis, 1993] Chrysanthis, P.K., “Transaction Processing in Mobile Computing Environments”,
IEEE Workshop on Advances in Parallel and Distributed Systems, October 1993.

[Dirckze, 1998] Dirckze, R., and L. Gruenwald, “A Toggle Transaction Management Technique for
Mobile Multidatabases”, ACM Conference on Information and Knowledge Management, November 1998.

[Dirckze, 2000] Dirckze, R. and L. Gruenwald, “A Pre-serialization Transaction Management Technique
for Mobile Multi-databases “, To appear : Special Issue on Software Architecture for Mobile
Applications, MONET 2000.

[Dunham, 1997] Dunham M., A. Helal, S. Balakrishnan S., “A Mobile Transaction Model that Captures
Both the Data and Movement Behavior”, Mobile Network and Applications, Vol. 2, No. 2, October 1997.

[Gray, 1993] Gray J., A. Reuter, “Transaction Processing : Concepts and Techniques”, Morgan
Kaufmann Publishers, Inc. 1993.

[Gruenwald, 1999] Gruenwald, L., et al., “Database Research at The University of Oklahoma”, ACM
SIGMOD RECORD, Vol. 28, No. 3, September 1999.

[Hong, 1999] Hong X., et al, “A Group Mobility Model for Ad Hoc Wireless Networks”, MSWIM, 1999.

[Kao, 1993] Kao B., H. Garcia -Molina, “Deadline Assignment in a Distributed Soft Real-Time Systems”,
Proceedings of the 13th International Conference on Distributed Computing Systems. May 1993.

[Ko, 1998] Ko, Y., N. Vaidya , “Location-Aided Routing (LAR) in Mobile Ad-Hoc Networks”,
MOBICOM 1998.

[Liu 1999] Liu, M., et al., “Modeling and Simulation of large Hybrid Networks”, Proceeding of 2nd
Annual Advanced Telecommunications/ Infrastructure Distribution Research Program (ATIRP)
Conference 1999.

[Madria, 1998] Madria, S. K., B. K. Bhargava, “A Transaction Model for Mobile Computing”,
International Database Engineering and Application Symposium (IDEAS 1998), July 1998.

