x
c
E]

g

®

5
§
2
[
s d
[is]
5
&
E
©

AL TR (L Haction management

Examining the ACID test requirements for the roaming computer

Ravi A. Dirckze and Le Gruenwald

he distinguishing characteris-

tic for nomadic computing is

the wireless communication

medium. This makes it possi-
ble for a fixed computer system to sup-
port a mobile user. The wireless
communication medium is used to
transfer data between the user to the
fixed computer system—revolutioniz-
ing distributed computing.

In today’s technology dominating
and communication intensive business
environment, wireless computing
offers numerous possibilities. For

example, a stockbroker can transact
with the New York stock exchange
while commuting on a commercial air-
line. An automobile insurance adjuster
can provide a cost estimate for repairs
from the site of the accident, itself. As
such, nomadic computing expands the
horizons of the computer realm.

In the static environment, many
autonomous databases cooperate with
other autonomous systems to provide
extended services to users. For exam-
ple, users can verify airline ticket
reservations that involve multiple air-
lines. The nomadic user wants access
to information available on the fixed
system from anywhere at anytime.
Thus, such cooperating database sys-
tems—referred to as multidatabase
systems—need to extend their services
to mobile users. Existing multidatabase
systems will need to be tailored to sup-
port nomadic users. These systems are

referred to as Nomadic MultiDataBase
Systems (NMDBSs).

The architecture

The general nomadic computing
model has two distinct sets of entities:
a fixed network system and a continu-
ously changing set of mobile hosts
(Fig. 1). The fixed networking system
has a collection of static computers
connected by a wired network. Some
static units are able to communicate
with mobile units through a wireless
medium. These units are called base
stations or Mobile Support Sta-
tions (MSS). The area covered
by a MSS is called a cell. The
(wireless) communication net-
work includes the cellular
architecture, the radio transmis-
sion over FM, the satellite ser-
vices and the wireless Local
Area Network (ILAN).

Although wireless technolo-
gy is fairly reliable, it is not as
robust as the mediums used in
the static systems. Thus, the
nomadic user will experience frequent
disconnections. The user will operate
in many modes ranging from highly
connected to disconnected. However, a
characteristic of these modes of opera-
tion is that they are foreseeable.

The mobile hosts are portable com-
puters that vary in size, processing
power, memory, and so forth. The typ-
ical mobile computer will have limited
resources compared to their desktop
counterparts. These limitations include
battery power, processing power,
volatile memory, disk space and net-
work bandwidth.

The Nomadic Multi-
database environment

The general NMDBS discussed
here will be a collection of autonomous
databases connected to a fixed network.
The respective database management
systems retain complete control over

their data. Each database may be
viewed as an independent site in the
network. These databases operate in
different environments and may use
different data models, data manipula-
tion facilities, transaction management
and concurrency control mechanisms,
and so forth. Such a composition of
connected autonomous database sys-
tems is called a multidatabase system.
Thus, a NMDBS may be viewed as a
multidatabase system that supports
mobile users. .

Users of the independent databases,
called internal users, access these data-
bases through their respective database
management systems. The execution
of local transactions submitted by
these local users will be transparent to
any global process. Users accessing
more than one database, called exter-
nal users, submit global transactions to
the Nomadic MultiDataBase Manage-
ment System (NMDBMS).

The NMDBMS is a set of software
modules existing on the fixed network
that cooperates with each other.
Together they project the illusion of a
single database to the external user. A
global transaction consists of a set of
sub-transactions that need to be exe-
cuted at different sites. The Global
Transaction Manager (GTM), a soft-
ware component of the NMDBMS,
manages the executions of the global
transactions.

Global transactions are allowed
only limited access to the individual

databases. For example, external users

are allowed to make reservations on a
commercial airline database system.
However, they are not allowed to exe-
cute adhoc queries that could compro-
mise sensitive information. Thus, each
database provides a service interface
that specifies the operations accepted
and the services provided to external
users. The GTM cooperates with the
respective service interfaces in order to
execute global transactions.

APRIL/MAY 1998

0278-6648/98/$10.00 © 1998 IEEE

31

As the databases are autonomous,
each local DataBase Management Sys-
tem (DBMS) is responsible for the cor-
rectness of all local and global
sub-transactions executed within its
domain. For this same reason, we may
assume that no integrity constraints exist
over data items at different sites as this
would violate local autonomy.

Responsibilities of the GTM

In DBMSs, a transaction is defined as
a basic independent unit of consistent
and reliable computing. A properly
formed transaction has a begin operation
followed by a sequence of read/write
operations and is terminated by a commit
or abort operation. The transaction man-
agement process must coordinate these
operations’ execution in order to guaran-
tee consistent and reliable computing.
Thus, the primary responsibility of the
transaction management process is to
provide consistent and reliable access to
data within its domain.

Consistency and reliability can be
achieved by enforcing the Atomicity,
Consistency, Isolation and Durability
(ACID) properties. Atomicity requires
that either all operations of a transaction
execute successfully or none at all. Con-
sistency requires that the database be left
in a consistent state after the execution of
a transaction. Isolation requires that the
effects of each transaction be isolated
from other transactions executing con-
currently. Durability requires all alter-
ations made by a successful transaction
be permanently reflected in the database.

Together, the consistency and isola-
tion properties guarantee a transaction to
be a consistent unit of computing; the
atomicity and durability properties guar-
antee a transaction to be a reliable unit of
computing. Thus, the ACID properties
ensure that the database is in a consistent
state under concurrent access even when
failures occur.

Each local transaction management
process is responsible for the consistency
and reliability of all local transactions

Acronyms
ACID— atomicity, consistency,
isolation and durability
GTM—global transaction manager
LAN—-local area network
MSS—mobile support stations
NMDBS— nomadic multidatabase system
NMDBMS— nomadic multidatabase
management system
DBMS-—database management system

and global sub-transactions executed at
its site. As nomadic users communicate
with only the NMDBMS, the GTM pro-
vides the additional services required to
support them. Thus, only transaction
management issues that affect the GTM
will be discussed.

Management issues

There are three primary features that
distinguish nomadic users from static
users. They are 1) the frequency of dis-
connections, 2) the relocation of the user
and 3) the relatively poor resources com-
pared to their static counterparts. Despite
these challenges, nomadic users will
expect to execute the same global trans-
actions they perform on static systems.

In the static environment, users estab-
lish a connection with the NMDBMS at
some site which is maintained until the
end of the session. If the connection is
broken prior to this, any uncompleted
transaction is terminated by the GTM.

The nomadic user cannot maintain a
continuous connection with the same
GTM process throughout a session. In the
new environment, disconnections cannot
be treated as failures that result in termi-
nated transactions. Further, when a user
migrates to a new location subsequent
operations will be submitted from the new
site. The execution time is also affected by
mobility. A transaction may be interrupted
by frequent disconnections followed by
long periods of inactivity prior to recon-
nection. This will prolong the execution
time. Next let us look at the effects of
these issues upon the GTM with respect
to each of the ACID properties.

Atomicity

For global transactions, atomicity
requires the transaction to succeed at all
sites or be aborted at all sites. In the mul-
tidatabase environment, the sites retain
complete control over their databases.
Thus, they retain the right to abort a
transaction at anytime prior to a success-
ful commit operation. Some literature
suggests that the local sites export a pre-
pare-to-commit operation after which
they relinquish the right to abort a trans-
action. This information can be used by
the GTM to provide an atomic commit
protocol at the global application level.

However, the prepare-to-commit
operation may force sites to hold
resources (e.g., locks) for an unspeci-
fied period of time. One may argue that
mechanisms such as time-outs could be
used to release such resources. If so, it

can be counter argued that the unilater-
al abort would have been supported in
the first place.

Enforcing atomic commits is further
complicated by the characteristics of the
nomadic environment. First, the GTM
needs to ensure that migrating transac-
tions are managed as single units; other-
wise, atomicity cannot be guaranteed.
Migrating transactions also affect the
commit protocol. Knowledge concerning
the constituent operations are now dis-
tributed among different sites. Thus, the
GTM needs to keep track of migrating
transactions and the sites at which they
are executed.

The limited resources and the frequen-
cy of disconnections necessitate a quick
response to user requests. Thus, the com-
mit protocol needs to be tailored to meet
the new performance requirements.

Consistency

In the multidatabase environment,
the GTM does not have to enforce the
consistency property. This is because
the databases are autonomous. There-
fore, they have no constraints defined
on data items residing at different data-
bases. Each local transaction manage-
ment process ensures that the operations
executed at its site do not violate any
overall defined constraints. Therefore,
all successful global transactions will,
by default, meet the consistency proper-
ty. Thus, the GTM is relieved of this
responsibility.

Isolation

Serializability is the most widely
accepted correctness criterion for ensur-
ing the isolation property. Serializability
requires that the effects of executing a set
of transactions concurrently be equivalent
to some serial execution of the same set
of transactions. Optimistic, concurrency
control algorithms based on serializability
will reject consistent transactions when-
ever a possibility of a conflict exists. Pes-
simistic concurrency control algorithms
based on serializability will prevent con-
sistent transactions from executing when-
ever a potential conflict exists. Thus,
global serializability—serializability of
all global and local transactions executed
at all sites—does not work well in the
multidatabase environment.

This is largely due to two reasons.
First, serializability was originally intro-
duced for centralized database environ-
ments and, therefore, is centralized by
nature. Second, as the databases are

32

IEEE POTENTIALS

- autonomous, the GTM is not aware of
. local transactions executed by the
DBMSs. Thus, suitable algorithms need
to be designed to meet the requirements
of the multidatabase environment.

Once again, the characteristics of the
nomadic environment further complicate
the issue. As mentioned before, mobility

prolongs the execution time of a transac-

tion. As the execution time increases, the
possibility of conflicting with other con-
current transactions increases as well.
Therefore, if optimistic concurrency con-
trol algorithms are used, the probability
of conflicts with other transactions will
increase. On the other hand, if pessimistic
concurrency control algorithms are used,
concurrency will be restricted.

The limited resources will also have
an effect on the isolation property. The
isolation property needs to be guaranteed
before the commit protocol is executed.
Thus, for the GTM to provide a timely
response, the concurrency control algo-
rithm needs to provide a timely response

to the GTM. This is an additional issue

that needs to be addressed by the concur-
rency control algorithm.

Again, the GTM must track the
migrating sub-transactions and the
sites where they are executed. This
information is required to enforce the
isolation property. '

Durability

Durability requires that the values
changed by a successful transaction must
persist in the database. In the multidata-
base environment, the durability property
cannot be directly implemented by the

~ global application. This is because it can-
not change or restore the values of data
items within the local databases. Thus, it
needs to rely on the durability property
of the local DBMSs.

The global application will be
relieved of enforcing this property if an
atomic commit operation is available. (It
then can rely on the durability property
of the local DBMSs.) However, as dis-
cussed previously, such an operation is
not currently available.

In the mobile environment, discon-
nections cannot always be treated as fail-
ures that must result in aborting
unfinished transactions. Whenever the
user disconnects, the GTM must deter-
mine the status of the user connection
before taking drastic action. Yet, due to
the nature of the environment, the GTM
is likely to make erroneous decisions.
(Say, a user connection is deemed to

have failed and reconnection is not
expected.) To minimize the ill-effects of
such erroneous decisions, the transaction
should not be aborted until its resources
are required by another transaction.
Thus, the system needs to define a new
“suspended” state to address this issue.

Also, due to disconnections, one can-
not guarantee that all responses will be
delivered to the user. Any response that
cannot be delivered prior to a disconnec-
tion needs to be logged by the GTM and
delivered upon reconnection.

Concluding remarks

Limited resources make it necessary
to look for more efficient concurrency
control algorithms and commit protocols.
The frequent disconnections and the
migration of the user raise additional
issues that complicate the atomicity, iso-
lation and durability properties. These
issues are compounded by the restric-
tions that apply to multidatabase sys-
tems. That is, constituent database
systems cannot be modified.

Finally, can mobility be addressed
entirely within the network layers? This
would make it transparent to all applica-
tions residing on the static network, The
advantage is that existing applications
would be able to support mobile users
without any modifications. However,
this approach is not an effective solution
for many reasons.

First, disconnections and migration
affect global transactions: i.e., prolong
its execution time. If mobility is trans-
parent to the NMDBS, such issues can-
not be addressed by the GTM. Second,
the NMDBMS cannot be sensitive to
the resource limitations of the mobile
users. Third, to maintain this virtual
connection, additional network traffic
generated—along with all communica-
tions— will need to be forwarded to the
initial site. This is required no matter
where the data being accessed is locat-
ed. Thus, mobility needs to be visible to
the NMDBS in order to provide an
effective solution.

Read more about it

¢ Alonso, R. and Korth, H. F., “Data-
base System Issues in Nomadic Comput-
ing,” SIGMOD Record, May 1993.

+ Ben-Hassen, S. and Rusinkiewicz,

- M., “On Serializability of Distributed

Nested Transactions,” Proc. 12th Inter-
national Conference on Distributed
Computing Systems, Japan, 1992.

* Breitbart, Y., Garcia-Molina, H. and

Fig. 1 Nomadic mulfidatabase architecture

Silberschatz, A., “Overview of Multidata-
base Transaction Management,” TR92-
21, University of Texas at Austin, 1992,

¢ Du, W. and Elmagarmid, A. K.,
“Quasi Serializability: A Correctness Cri-
terion for Global concurrency control in
InterBase,” Proceedings of the I5th Inter-
national Conference on VLDB, Amster-
dam, The Netherlands, August 1989.

¢ Dunham, M. H. and Helal, A.,
“Mobile Computing and Databases:
Anything New?” SIGMOD Record, Vol.
24, No. 4, December 1995.

¢ Imielinski, T. and Badrinath, R. B.,
“Wireless Computing: Challenges in
Data Management,” Communications of
the ACM, Vol. 37, No. 10, October 1994.

« Mehrotz, S., Rastogi, R., Silberschatz,
A. and Korth H. F., “A Transaction Model
for Multidatabase Systems,” Proc. 12th
International Conference on Distributed
Computing Systems, Japan, 1992.

¢ Noble, B. D. and Satyanarayanan,
M., “A Research Status Report on Adap-
tation for Mobile Data Access,” SIG-
MOD Record, Vol. 24, No. 4, Dec. 1995.

* Ozsu, M. T. and Valduriez, P., Prin-
ciples of Distributed Database Systems,
Prentice Hall, Englewood Cliffs, NJ, "91.

* Pitoura, E. and Bhargava, B., “Deal-
ing with Mobility: Issues and Research
Challenges,” Technical Report CSD-
TR93-070, Purdue University, 1993.

+ Pitoura, E. and Bhargava, B.,
“Revising Transaction Concepts for
Mobile Computing,” Proceedings of the
IEEE Workshop on Mobile Systems and
Applications, Santa Cruz, CA, Dec. 1994,

About the authors

Ravi A. Dirckze is a graduate student
at the University of Oklahoma working
towards his doctoral degree in Computer
Science.

Dr. Le Gruenwald is an Associate
Professor in the School of Computer Sci-
ence at the University of Oklahoma. Her
research areas include real-time Main
Memory databases, Distributed and
Mobile databases, Object Oriented data-
bases and Multimedia databases.

APRIL/MAY 1998

33

