A TOGGLE TRANSACTION MANAGEMENT TECHNIQUE
FOR MOBILE MULTIDATABASES

Ravi A. Dirckze
School of Computer Science,

University of Oklahoma,
Norman, Oklahoma 73019
radirckz@cs.ou.edu
1. ABSTRACT
Frequent disconnection and migrating
transactions are new issues that need to be
Multidatabase

addressed bﬁ the Mobile
System (MMDBS). Disconnection cannot be
treated as catastrophic failures that result in

aborted transactions, Disconnection and
migration prolong the execution time of
transactions which, in turn, _affects

concurrency control. Furthermore, limiting
the MMDBS to purely ACID transactions may
not be desirable. In this paper, we develop a
Toggle Transaction Management Technique
for the Mobile Multidatabase environment
that addresses these issues. Two new states -
Disconnected and Suspended - are introduced
to address disconnection and migration.
toggle operation is introduced to handle the
extended execution time of transactions. A
Partial Global Serialization Graph commit
algorithm that supports a wide range of
correctness criterion with respect to the
Atomicity and Isolation properties is
introduced and its correctness is proved.

2. INTRODUCTION

The mobile computing model consists of two distinct sets of
entities: a fixed network system and a continuously changing set
of mobile clients (Figure 1). The fixed networking system
consists of a collection of static computers connected by a wired
network. Some units on the static network have the capability of
communicating with mobile units through a wireless medium and
are called mobile support stations (MSS). The arca covered by an
MSS is called a cell [11]. During the course of execution, the
mobile user is likely to migrate across ceils. The typical mobile
computer has limited resources compared to its desktop
counterpart {12]. Due to the unreliability of the wireless
communication medium as well as limited resources available,
the mobile user will be characterized by frequent disconnection.
However, disconnection is predictable [9].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
Tequires prior specific permission and/or a fee.

CIKM 98 Bethesda MD USA

Copyright ACM 1998 1-58113-061-9/98/11...$5.00

371

Le Gruenwald
School of Computer Science,
University of Oklahoma,
Norman, Oklahoma 73019

gruenwal@cs.ou.edu

The Mobile Multidatabase System (MMDBS) consists of a
collection of autonomous databases connected to a fixed network
and a Mobile Multidatabase Management System (MMDBMS).
The MMDBMS is a set of software modules that resides on the
fixed network system. The respective Database Management
System (DBMS) of each independent database retains complete
control over its database. These databases use different data
models, transaction management mechanisms, etc. [1]. Each local
database provides a service interface that specifies the operations
accepted and the services provided to the MMDBMS. The
MMDBMS cooperates with the service interfaces to provide
extended services to its users. Existing (local) users of the
autonomous databases will continue to access these databases
through their respective DBMSs. Local transactions executed by
local users are transparent to the MMDBMS. Global users - users
connected to the MMDBMS - are capable of accessing multipie
databases by submitting global transactions to the MMDBMS.
Global users could be either static users or mobile users.

A global transaction consists of a set of operations, each of which
is a legal operation accepted by some service interface. Any
subset of operations of a global transaction that access the same
site may be executed as a single transaction with respect to that
site and will form a logical unit called a site-transaction. Site-
transactions are executed under the authority of the respective
DBMS. As mobile users migrate from one MSS to another,
operations of a global transaction may be submitted from
different MSSs. Such transactions are referred to as migrating
transactions.

The Global Transaction Manager (GTM) is a software component
of the MMDBMS that manages the execution of global
transactions. A transaction is defined as an independent unit of
consistent and reliable computing [11]. Ensuring that global
transactions are consistent and reliable units of computing is the
primary responsibility of the GTM. Generaily, this can be
achieved by enforcing the ACID (Atomicity, Consistency,
Isolation, and Durability) properties [6].

As a consequence of autonomy, we can assume that no data
integrity constraints are defined on data items residing at different
sites [3]. As each local DBMS will ensure that the site-
transactions executed by it do not violate any local integrity
constraints, global transactions will, by default, satisfy the
Consistency property. Similarly, the GTM can rely on the
Durability property of the local DBMS to ensure Durability of
commiited global transactions. Thus, the GTM need only enforce
the Atomicity and Isolation properties.

In [5], the authors make a compelling argument for providing
unrestricted access to data in the MMDB environment.

“Returning dirty data tagged with appropriate warnings is much
more useful than returning an ABORT message ...”. This will
make it necessary for the GTM to support a spectrum of
correctness criterion with respect to the Atomicity and Isolation
properties.

-~ Mboyile User T

’ N ’ .

} IFixedUser /

Fixed Network

Figure 1: Mobile Computing Architecture

In addition to the Atomicity and Isolation properties, the GTM of
the MMDBMS needs to address disconnection and migrating
transactions. Unlike disconnection in the static environment,
disconnection in the mobile environment cannot be treated as
failures that result in aborted transactions. Disconnection and
migration need to be viewed as events that occur during the
normal course of execution of a global transaction. However, in
some cases, disconnection will be caused by catastrophic failures,
or a catastrophic failure may occur after a disconnection. Halted
transactions are not resumed after a catastrophic failure and need
to be aborted. As the MMDBMS can only predicted the nature of
the disconnection, erroneous decisions are bound to be made
resulting in unnecessary abortions. The GTM needs to minimize
unnecessary abortions caused by erroneous decisions.

Some global transactions are expected to be interactive by nature,
i.e., pause for input by the user [2]. The interactive nature of
global transactions, as well as disconnection and migration
prolong the execution time of global transactions. Such
transactions are referred to as Long-Lived Transactions (LLT)
[10]. To tolerate LLTs without disruption to transaction
processing, site-transactions should be allowed to commit
independently of the global transaction so that (local) resources
held by the site-transaction may be released in a timely fashion.
In addition, as the execution time of a transaction increases, the
probability of that transaction conflicting with other transactions
increases and, therefore, LL.Ts are more likely to be aborted due
to Isolation property violations [4]. The GTM needs to minimize
this ill-effect upon LLTs.

Furthermore, the GTM of the MMDBMS should conform to
Multidatabase design restrictions, that is, the autonomy of the
local databases cannot be violated. Also, no modifications can be
made to the local DBMS:s in order to support the MMDBS.

Transaction management in the MMDB environment has received
considerable attention lately [12] [2] [13] [S]. However, none of
the proposed techniques provide a complete solution [4]. In fact,
the affects of the prolonged execution of LLTs and disconnection
caused by catastrophic failures are not addressed by any
technique. Further, no technique enforces the Isolation property.

372

A detailed review of transaction management techniques in the
MMDB environment can be found in [4].

In this paper, a transaction management technique cailed the
Toggle Transaction Management (TTM) technique that addresses
the deficiencies that exist in the current literature will be
introduced. This technique is presented in the following section.
Concluding remarks and our plans for future research are
presented in section 4.

3. THE TOGGLE TRANSACTION MANAGEMENT
TECHNIQUE

In the Toggle Transaction Management (TTM) technique, the
GTM consists of two layers: The Global Coordinator layer that
manages the overall execution and migration of global
transactions, and a Site Manager layer that supervises the
execution of site-transactions. Site-transactions are categorized as
either vital or non-vital [2]). This provides the flexibility to
support a range of Atomicity and Isolation correctness criterion.
Each global transaction will be associated with a data structure
that contains the current execution status of that transaction, and
will follow the user from MSS to MSS.

Two new states - Disconnected and Suspended - are introduced to
support disconnected operations. Upon disconnection, associated
transactions are placed in the Disconnected state and execution is
allowed to continue. If at any time during a disconnection the
MMDRBS determines that a catastrophic failure has occurred and
that the user is unlikely to reconnect, transactions are placed in
the Suspended state and execution is suspended. Suspended
transactions will not be aborted until they obstruct the execution
of other transactions. Therefore, needless abortions caused by
erroneous decisions made by the MMDBS will be minimized.

In order to minimize the ill-effects of the extended execution time
of mobile transactions, a global transaction can state its intent to
commit by executing a toggle operation. If the operation
succeeds, the GTM guarantees that the transaction would not be
aborted due to Atomicity or Isolation violations unless the
transaction is Suspended.

Whenever a global transaction requires to commit or be toggled,
the TTM technique executes the Partial Global Serialization
Graph (PGSG) commit algorithm to verify the Atomicity and
Isolation properties. The algorithm first verifies the Atomicity
property. If Atomicity has been violated, the transaction is
aborted; else, the Isolation property is verified. If Isolation has
been violated, the algorithm attempts to resolve the violation. If
Isolation property violations cannot be resolved, the transaction is
aborted; else, the commit or toggle operation succeeds. This
algorithm is based on an optimistic approach. Next, a detailed
description of the TTM Technique is provided.

3.1 The Model

The GTM consists two layers: a Global Coordinator (GC) layer
and a Site Manager (SM) layer (Figure 2). The Global
Coordinator layer consists of a set of Global Transaction
Coordinators (GTCs). Each GTC exists at an MSS and will
manage the overall execution of global transactions of users
currently connected to it. The Site Manager layer consists of a set
of Site Transaction Managers (STMs).. Each STM exists at a
participating database site and will supervise the execution of
site-transactions submitted to that site. The GTCs and STMs
communicate with each other to coordinate the execution of
global transactions.

Global transactions are based on the Multi-Level Transaction
model [6] in which the global transaction consists of a set of
compensatable sub-transactions. A compensatable transaction is a
transaction whose effects can be undone after it has committed by
executing a compensating transaction [8]. In the proposed model,
all operations of a global transaction that access the same site
constitute a site-transaction that is executed as a single transaction
with respect to that site. All site-transactions are compensatable
and, therefore, can be committed prior to the decision to commit
the global transaction, releasing resources in a timety manner.

MSS 1 MSS 2
T GICT | < AR . CICZ | ¢
GC layer :
:"S'Mléiéi"
: STM 1 — STM 2 :

e p—— el e s s s v acee -3

Service Interface T GTM ervice Interface 2
Local DBMS 1 ocal DBMS 2

Site A Site B

Figure 2: Global Transaction Manager

In addition, all site-transactions will be categorized as either vital
or non-vital [2]. All vital site-transactions of a global transaction
must succeed in order for the global transaction to succeed. The
abort of non-vital site-transactions do not force the global
transaction to be aborted. This categorization provides the
flexibility to accommodate a wide range of Atomicity and
Isolation criterion. The MMDBS can specify the levels of
Atomicity and Isolation that need to be enforced in terms of either
the number of vital and non-vital site-transactions, or restrictions
placed upon non-vital site-transactions. Requiring non-vitai site-
transactions to be read-only is an example of such a restriction.

3.2 Disconnection and Migration Support
Global transactions are initiated at some GTC component of the
GTM. The GTC will submit site-transactions to the STMs, handle
disconnection and migration of the user, log responses that cannot
be delivered to the disconnected user, enforce the Atomicity and
Isolation properties, etc.

Each global transaction can be in one of five states: 1) Active -
the user is connected and execution continues; 2) Disconnected -
the user is disconnected, but the disconnection was predicted and
re-connection is expected; 3) Suspended - the user is disconnected
and the status is unknown; 4) Committed - the transaction
committed successfully; and 5) Aborted - the transaction is
aborted.

When a global transaction is initiated by a user, the respective
GTC creates a Global (data) Structure to keep track of the
information required to supervise its overall execution. The
Global Structure is given in Table 1.

GTID global transaction identifier
GT_Status current state of global transaction
Commit_Intent Boolean field - specifies commit intent
Site_List respective site of each site-transaction

373

STID_ List respective STID of each site-transaction

Critical List vital/non-vital for each site-transaction

STID Status List | respective status of each site-transaction

Response_List list of undelivered responses, if any

Table 1: Global Data Structure

The STM at each site supervises the execution of site-transactions
submitted to that site. Each site-transaction could be in one of
four states: 1) Active - the site-transaction is active; 2) Completed
- the site-transaction has committed at the local database but the
global transaction has not committed; 3) Aborted - the site-
transaction is aborted; or 4) Committed - the site-transaction and
the respective global transaction has committed. Each STM will
maintain a Site Table containing information on all site-
transactions submitted to it. For each site-transaction, the
following information will be collected:

GTID respective GTID
STID assigned STID

MSS ID current MSS to which user is connected

STID Status current status of site-transaction

Comp Transaction | compensating site-transaction

Table 2: Entry in Site Table

After submitting all operations of a site-transaction to the STM,
the GTC will submit the respective compensating (site)
transaction to the STM. Upon completion of the execution of a
site-transaction, the STM will submit a commit operation to the
local DBMS and update the STID_Status of that site-transaction
to reflect the outcome of the local commit operation, i.e., marked
Completed or Aborted.

Whenever a user disconnects, the GT_Status of all global
transactions of that user are marked as Disconnected. Upon
reconnection, the GT_Status of Disconnected transactions will be
set to Active and execution is resumed. All responses received
after disconnection are placed in the Response_List and delivered
to the user upon re-connection. If the MMDBMS determines that
a catastrophic failure has occurred, the GT_Status of global
transactions related to that connection are marked as Suspended.
Any site-transaction of the Suspended global transaction that
obstructs the execution of another global transaction is aborted. If
a user whose global transactions were Suspended re-connects, the
execution of each Suspended transaction will be resumed only if
none of its vital site-transactions have been aborted; else, the
Suspended transaction is aborted. This will minimize the number
of unnecessary abortions caused by erroneous decisions made by
the MMDBMS.

When a user migrates to a new cell, the user will supply the
current MSS with the identity of the previous MSS. The GTC at
the current MSS will obtain the associated Global Structure from
the previous GTC and take on the responsibility of overall
execution.

In order to ensure that LLTs are not penalized due to their
extended execution time, each global transaction will be
associated with a Commit-Intent variable that is initially set to
False. At any time during its execution, an LLT may execute a
toggle operation. At this point, the respective GTC will determine
whether the required levels of Atomicity and Isolation can be
guaranteed for the current set of site-transactions of that global
transaction by executing the PGSG commit algorithm to be

explained in section 3.3.1. If the required levels can be
guaranteed, the toggle operation succeeds and the Commit_Intent
field is set to True. Else, the global transaction has already
violated the required levels and, therefore, is aborted. Once a
global transaction is toggled, it may initiate only non-vital site-
transactions. A successful toggle operation establishes the global
transactions place in the serialization order and guarantees that
the transaction would not be aborted due to Atomicity/Isolations
violations unless it is Suspended. Although any site-transaction
initiated after the toggle operation could cause a potential
Atomicity/Isolation property violation, it cannot force the global
transaction to be aborted as it is non-vital.

3.3 Enforcing the Atomicity and Isolation
Properties

Whenever a global transaction is to be committed or toggled, the
respective GTC will execute the PGSG commit algorithm to
verify the Atomicity and Isolation properties. The algorithm first
verifies the Atomicity property. If the required level of Atomicity
can be guaranteed, the Isolation property is verified; else, it is
aborted. If the required level of Isolation can be guaranteed, the
transaction is toggled or committed; else, it is aborted.

The Atomicity property is based on Semantic Atomicity [8] which
requires either all site-transactions to be committed or each site-
transaction to be aborted or compensated for. This correctness
criterion allows site-transactions to commit early, regardless of
the future outcome of the global transaction.

In the PGSG commit algorithm, if a global transaction is to be
aborted, all Completed site-transactions will be compensated for
and all Active site-transactions will be aborted as required by
Semantic Atomicity. However, as long as all vital site-
transactions have successfully completed their execution, i.c.,
marked Completed, the global transaction is allowed to commit.
A locally aborted non-vital site-transaction does not force the
global transaction to be aborted. Although this is a violation of
Semantic Atomicity, it is justified as follows: In section 1, it was
stated that the GTM needs to support a wide range of correctness
criterion with respect to the Atomicity property. If all site-
transactions are categorized as vital, then Semantic Atomicity will
be strictly adhered to. If all site-transactions are categorized as
non-vital, non-Atomic global transactions will be supported. By
allowing global transactions to consist of any combination of vital
and non-vital site-transactions, the TTM technique supports the
full range of Semantic Atomicity.

The Isolation property is based on serializability. In the MMDB
environment, Serializability requires conflicting site-transactions
of two global transactions to be serialized in the same order at all
sites at which the two global transactions execute. In order to
establish the serialization order of global transactions, each STM
maintains an SSG that reflects the local serialization order of all
site-transactions that execute at that site. As the serialization order
of site-transactions within the local databases is transparent to the
STM, this information is obtained implicitly by forcing conflicts
among the site-transactions that execute at each site by using a
data item called a ticket [7]. Each site-transaction is required to
read the respective ticket, increment its value and write the new
value back at the beginning of its execution. The Ticket value
read by the site-transaction indicates its serialization order at that
site [1] and will be used to construct the SSG.

The SSG at each site is a directed graph (or digraph) whose nodes
represent global transactions and edges represent (forced)

374

conflicts between their respective site-transactions executed at
some site. For example, if T{—T2 exists in some SSG, then
global transactions T} and T7 access at least one common site
where the ticket obtained by the site-transaction of T is less than
the ticket obtained by the site-transaction of T2. The information
contained within each node is given is Table 3. Each node in the
SSG is categorized as either an Accessed node or a Propagated
node. Whenever a site-transaction is submitted to a site, a node
representing the global transaction is marked Accessed and added
to the SSG using its ticket value to determine its serialization
order. The Site_ID of the Accessed node is set to the ID assigned
to that site. In addition, whenever a global transaction is
committed or toggled by the PGSG commit algorithm,
serialization information is propagated back to all participating
SSGs. Nodes copied during this phase are marked as Propagated
nodes.

GTID respective global transaction ID

GT Status status of global transaction

Commit Intent commit intent of global transaction

Node Category | Accessed or Propagated

Site_ID Tthis Site_ID or ID of Propagated Site

Table 3: SSG Node

To verify serializability of a global transaction, the PGSG commit
algorithm constructs a Partial Global Serialization (PGS) graph
using the SSGs maintained at the sites at which the global
transaction executed. The algorithm will then look for cycles
containing Completed site-transactions of that global transaction
in the PGS graph. If cycles are detected, the algorithm will
attempt to break the cycles by aborting site-transactions of
Suspended global transactions and/or non-vital site-transactions
of that global transaction. If the cycles cannot be resolved, the
global transaction is aborted; else, it is committed or toggled. As
only Completed site-transactions of that transaction are taken into
account when looking for cycles, the PGSG algorithm enforces
the full range of Isolation as well. A detailed description of the
algorithm follows.

3.3.1 The PGSG Algorithm
First, it is necessary to define certain terms used in the

algorithm.
Definition 1: We say that T; is reachable from Tj in graph G if
there is a path from Tj to T; m G.
Definition 2: Reachable(TJ ,) is a (directed) sub-graph of an SSG
that contains node Tj and al] nodes Tj such that Tj is reachable
from Tj in the SSG.
Definition 3: a Candidate node is any Propagated node whose
GT_Status is not Committed.
Definition 4: Let G; and G; be two graphs with node sets Nj and
N; and edgc sets Ej and 'E; respectively. The operation G =

erge(Gj, G;) results in a new graph G(N, E) such that N =Nj v
Nj and E=E; U E; where U is the union operator.
Def nition 5 The graph Predecessor(Tj, Sp) is the sub-graph
Reachable(Tj) of the SSG at site Sm I(/Ierged with the graphs
Predecessor(Tk, Sp) where Tk is a Candidate node in
Reachable(Tj) and Sy is the respective propagated site of Ty.
Formally,
Predecessor(Tj, Spp) = { G = Reachable(T) | Merge (G,
Predecessor(k> Spn)) V Candidate nodes Tk in Reachable(T;)
where S, is the Site_ID of T }
Definition 6: The list PList(T}, Sy is a list of sites maintained at
site Sy that contains the list of sites from which the Predecessor
graphs were obtained in order to construct Predecessor(Tj, Sm).

Whenever a global transaction, say Tj, is to be committed or
toggled, the PGSG algorithm will first verify Semantic Atomicity
by inspecting the Global Structure of Tj. If the STID_Status_List
indicates that all vital site-transactions have completed
successfully, then the required level of Semantic Atomicity can be
guaranteed; else, Tj is aborted.

If Semantic Atomicity can be guaranteed, the PGSG algorithm
verifies the Isolation property by determining serializability. In
order to construct the PGS graph, this algorithm initiates the
Request Predecessor(Tj, Sm) algorithm at all sites Sy at which Tj
executed successfully.” The Predecessor(T;, Sm) graphs returne
by the sites are Merged to construct PGS graph. Next, the
algorithm verifies whether T; violates serializability with respect
to Committed and Toggled transactions by checking for cycles
amongst the relevant nodes in the PGS graph, i.e., Completed
site-transactions of Tj and all nodes representing Committed and
Toggled global transactions. The GT_Status and Commit_Intent
fields of the nodes are used to determine whether a transaction is
Committed or Toggled. If a cycle is detected, the algorithm
attempts to break the cycle by first aborting site-transactions of
Suspended global transactions and then aborting non-vital site-
transactions of Tj. If the cycle cannot be broken, the global
transaction is aborted. If the cycle can be broken, then Isolation
can be guaranteed and the operation succeeds. Each STM, except
the STMs at which non-vital site transactions need to be aborted
in order to break cycles, is informed that Tj is to be committed or
toggled. In addition, these STMs receives a copy of the PGS
graph so that serialization information contained in the PGS
graph will be propagated.

After a toggled transaction completes its execution, it needs to
execute the PGSG algorithm a second time in order to determine
if any non-vital site-transactions initiated after the toggle
operation violate the serialization order established by the toggle
operation. Any site-transaction that violates this order needs to be
aborted. The PGSG algorithm is given below. The Operation field
specifies whether the requested operation is a Commit or a Toggle
operation.

PGSG Algorithm (Operation, Tj)
/* This algorithm verifies Atomicity and Isolation */
/* first, verify required level of Semantic Atomicity */
If any critical site-transaction has been aborted I* violation */
Send Abort(T)) to all sites in Site_List
Else
/* verify required level of Isolation */
Request Predecessor(Tj, Sy) from all site Sp in Site_List where
- Tjis marked as Completed
Generate PGSG by Merging all Predecessor(Tj, Sp)
Check for cycles w.r.t. Tj, Committed nodes and Togged nodes
If cycles are detected
If cycles can be broken by aborting Suspended and/or
-- non-vital site-transactions of Tj
Mark GT _Status of respective nodes as Aborted in PGSG
If node represents non-vital site-transaction of T;
Send Abort (T;) to respective site and remove associate
- site from Site_List
End If
Else /* Isolation violated */
Send Abort (Ty) to Site_List
Exit Algorithm
End If
Endlf

375

/* required leve!l of Atomicity and Isolation can be guaranteed */
Mark GT Status of T = Committed (or toggle Commit_Intent)
-- in Global Structure

Send Committed (or Toggled) to Site_List

/* Propagate Serialization information to SSGs */

Send PGSG to all sites in Site_List

End {PGSG Algorithm}

In order to construct the PGS graph for global transaction Tj, the
PGSG algorithm will initiate the Request Predecessor algorithm
to obtain Predecessor(Tj, Sp) from all sites Sp at which T;
executed successfully. These sites are referred to as Primary sites.
To construct Predecessor(Ti, Sp), each Primary site obtains
Predecessor(Tk, Sg) for all Candidate nodes T in Reachable(Tj)
where Sg is the Site_ID of Ty. In turn, each site Sg may obtain
Predecessor graphs from other sites. All non-Primary sites that
participate in the algorithm are referred to as Secondary sites. At
each site, PList contains the list of sites from which it obtained
Predecessor graphs. Each Primary site submits Predecessor(Tj,
S,) to the respective GTC and awaits the outcome of the
operation. If Tj is to be committed, then the respective
STID_Status of Jl‘j in the Site Table and the GT_Status of the
respective node in‘the SSG is marked as Committed. If T is to be
toggled, then the Commit_Intent field of the respective node in
the SSG is set to True. In addition, each Primary site, except the
Primary sites at which non-vital site-transactions were aborted in
order to eliminate cycles, will receive a copy of the PGS graph so
that serialization information will be propagated to its SSG. The
Primary site will then submit the PGS graph to all sites in its
PList so that the serialization information is propagated to all
participating sites. As each participating site, where
Predecessor(Ty, Sx) represents the graph submitted by that site,
receives the PGS graph, all nodes that appear before Ty in the
serialization order in the PGS graph are propagated to its SSG by
Merging Reachable(Ty) of the PGS graph with the SSG at that
site. Any Suspended nodes that were aborted in order to commit
T; will be aborted at the respective sites. This information is
contained in the propagated PGS graph as well.

If the response received by the STM at the Primary site is to abort
Tj, then the respective STID_Status of Tj in the Site Table is
marked as aborted and the respective node is deleted from the
SSG. If Tj is marked Completed, then the associated
compensating transaction is executed; else it is Active and T;j is
aborted. All Secondary sites in PList are informed that Tj was
aborted. No serialization information needs to be propagated as,
in essence, the execution of Tj is erased from that site. Note that a
Primary site at which Tj executed a non-vital site-transaction may
receive an abort response even though Tj is to be committed, as it
may have been necessary to abort that site-transaction in order to
eliminate cycles in the PGS graph. The Request Predecessor

algorithm is given below:

Request Predecessor(Tj, Sy)
Construct Predecessor(?l i Sm), PList(T}, Sm)
Submit Predecessor(T}, .Sl
If Reply is Abor(Tj) I* site-transaction is to be aborted */
If Tj is Accessed node in SSG /* this is a Primary site */
Abort or compensate Tj
End If
/* inform all Secondary sites */
Send Abort (T)) to all sites in PList(T}, Sm)
Else [* global transaction is to be committed or toggled */
If T; is Accessed node in SSG 1* this is a Primary site */
Mark GT _Status as Committed or Commit_Intent as True

If T; is committed
ark STID _Status as committed
End If
End If
* Propagate serialization information */
SSG = Merge(SSG, Reachable(T;) of received PGSG)
Abort any Suspended nodes marked as Aborted in PGSG
Send Committed/Toggled and PGSG to all sites in PList(Tj, Sp)
End If
End { Request Predecessor)}

2.3.2 Proof of Correctness

In this section, it will be proven that all cycles will be detected by
the PGSG algorithm. First, it is necessary to present the following
lemma:

Lemma 1: Let Tj—>T; be in the SSG at some site SJ Then, Tj
began its execution até prior to the completion of TJ s execution
at Sj and therefore, pnor to the (global) commit of S;.

Proof: In order for Tj—Tj to exist, Tj must have obtained a ticket
that is less than the ticket obtained by Tj. Therefore, Tj began its
execution at S; prior to T; completing its execution at §;.

Theorem 1: Let T = {Ty, T2, ..., Tp} be a set of transactions that
cause a cycle. Assume that Ty through Tp commit successfully
and that T is the last transaction in T to attempt to commit. Then
T} will be an Accessed node as well as a Candidate node in some
Predecessor(T1_, Sx) used to construct the PGSG. Thus, the cycle
will be detected.

Proof: For simplicity, let us assume that each transaction
executes at exactly two sites such that the cycle
C=T1->Ty—..>Tp—Tj is produced.

By Theorem 1, for all Tq that have completed their execution,
there exists Tp—Tgq for some Tp in T in the SSG at some site Sq
at which Tq executed. When T executes the PGSG commit
algorithm, '? is in Predecessor(%' Sq) used to construct the
PGSG. Now, either T, is commltted or not committed.

If Ty is not commltteg then Tp will be added as a Candidate node
to all the SSGs at which T executed

If Ty is committed, then, %y Theorem 1, there exists a Ty in S
such that Ty —Tp at some site Sy at which T executed. Once
again, either Ty, was committed or not committed at the time of
Tp’s commit. If Ty, was not committed, then Ty, was propagated
t0 Sy at the time of Tp’s commit and, as a result, will be in
Predecessor(T S) at the time of T4’s commit and will be added
asa Candldate node to all SSGs at (l!nch Tq executed. If Ty was
committed, we may repeat this argument As the conflicts are
cyclic, Predecessor(Ty, Sq) used to construct the PGSG when Tq
attempts to commit will always contain a non-committed node
from T which will then be added as a Candidate node to all SSGs
at which T executed.

Now let T} attempt to commit at site S} and Sn where T1—>T2
and Tp—T] exist respectively. Then, as Ty is committed, the
SSG at Sy, will contain a Candidate node - say Tx with respective
site Sy - in its Predecessor(Ty, Sp). If Tx committed after its
propagation to site Sp, then the SSG at Sx would, in turn, contain
a Candidate node. Finally, As the only node in the cycle that is
currently active is T1, the Predecessor(T|, Sp) constructed at site
Sp will contain Ty as an Accessed node as well as a Candidate
‘node. Therefore, Predecessor(Ty, Sp) will contain the entire

376

cycle. Thus, the PGSG will contain the cycle. As all nodes except
T1 are committed, the cycle will be detected.

3.3.3 A Sample execution of the PGSG algorithm

The following example is used to illustrate the PGSG algorithm.
In this example, the MMDBS consists of 4 sites labeled Sj
through S4. There are 4 active global transactions labeled Ty
through T4 in the system. For simplicity, we assume that each
transaction accesses two sites and that all transactions have
completed their execution but have not yet committed. The
algorithm is illustrated in Table 4. The initial SSGs are given in
row one. Initially, all nodes are Accessed nodes. Each of the next
4 rows reflects the SSGs after the completion of the PGSG
algorithm of the specified transaction. In each row, only the sites
that participate in the commit algorithm will have corresponding
entries. For example, as Sy, S and S3 participate in the commit
phase of transaction T, these columns will contain the new
SSGs. The column representing S4 will not contain an entry as it
does not participate in the commit phase of Tp. The associated
site labels of all Propagated nodes will be specified in brackets
below the respective node (transaction) in each SSG. The last
column in the table reflects the PGSG that is constructed at each
stage. A [C] below the respective node in the PGSG states that the
node is to be committed and an [A] states that the node is to be
aborted.

In this example. transactions T1, T7, and T3 commit successfully.
During the commit phase of T, node T4 will be propagated from
the PGSG to the SSG at S. During the commit phase of T3, node
Ty will be propagated from the PGSG to the SSG at S4. During
the commit phase of T2, nodes T4 and Ty will be propagated
from the PGSG to the SSG at S3. Finally, when transaction Ty
executes the PGSG commit algorithm, it will be forced to abort as
the PGSG contains a cycle and all other transactions involved in
the cycle have already committed.

4. CONCLUDING REMARKS

In this paper, a transaction management technique for the Mobile
Multidatabase environment called the Toggle Transaction
Management (TTM) technique is presented. In TTM, site-
transactions are allowed to commit independently so that
resources may be released in a timely manner. Two new states -
Disconnected and Suspended - are introduced to address
disconnection and migration. Unnecessary abortions caused by
erroneous decisions made by the MMDBMS w.r.t. the status of a
disconnection are minimized. A toggle operation is used to
minimize the ill-effects of the prolonged execution of Long-Lived
transactions. A PGSG commit algorithm that enforces a wide
range of correctness criterion with respect to the Atomicity and
Isolation properties is proposed and its correctness is proved.

In the TTM technique, concurrency is limited as all site-
transactions that execute at each site are forced to conflict with
each other. In our future research, the artificial conflicts generated
by the algorithm will be eliminated by exploiting semantic
information of site-transactions. Each service interface will need
to provide conflict information on all operations accepted by that
site. This information will be used to generate conflicts amongst
site-transactions that actually conflict with each other. The current
transaction model will also be extended to include compensatable
and retriable site-transactions in the same global transaction in
order to expand the application domain. Finally, we intend to
carry out a performance evaluation and comparison study.

S1 S2 S3 S4 PGSG

Initial SSGs T4-T} T1>T2 Tr—T3 T3—>T4
Commit of Tq T4-T) T4->T1-T2 T4-T-T2

(S1] C
Commit of T3 Ty—>T3 Tr—>T3-T4 Tr—->T3->Ty

[S3] [C]

Commit of Ty T4—-T1 T4>T1-T2 | T4-T1->T2—T3 T4-T1->T2-T3

[S1] [S11182] 1 .
Commit of T4 Ty T1-T2 T1-T2-T3 Ty—>T3 T4—>T1-5T2>T3-Ty

[S2] {S3] [A]
Table 4: Sample execution of PGSG algorithm
5. REFERENCES [8] Mehrotra S., Rastogi R., Silberschatz S, Korth H. F. "A

[1] Breitbart Y., Garcia-Molina H., Silberschatz A. "Overview
of Multidatabase Transaction Management” , TR-92-21,
University of Texas at Austin.

[2] Chrysanthis P.K. "Transaction Processing in Mobile
Computing Environments", IEEE Workshop on Advances in
Parallel and Distributed Systems, October 1993.

[3] Du W. Elmagarmid A. K. "Quasi Serializability: A
Correctness Criterion for Global Concurrency Control in
InterBase". Proceedings of the 15th International Conference
on VLDB, Amsterdam, The Netherlands, August 1989

[4] Dirckze R., Gruenwald L. "Disconnection and Migration in
Mobile Multidatabases”, The World Conf. on Design and
Process Technology, Germany, July 1998

[5] Dunham M. Helal A., Balakrishnan S. "A Mobile
Transaction Model that Captures Both the Data and
Movement Behavior ". Mobile Networks and Applications,
Vol. 2, No. 2, October 1997.

[6] Gray J., Reuter A. "Transaction Processing: Concepts and
Techniques". Morgan Kaufmann Publishers, Inc. 1993.

[7] Georgakapolous D., Rusinkeiwicz M., Sheth A. "On
Serializability of Multidatabase Transactions through Forced
Local Conflicts", Proceedings of the 7th International
Conference on Data Engineering, Kobe, Japan, 1991

377

Transaction Model for Multidatabase Systems", Proc. 12th
International Conference on Distributed Computing
Systems, Japan 1992

[9] Pitoura E., Bhargava B. "Dealing with Mobility: Issues and
Research Challenges”". Technical Report CSD-TR-93-070,
Purdue University 1993.

[10] Pitoura E., Bhargava B. "Revising Transaction Concepts for
Mobile Computing”, Proceedings of the IEEE Workshop on
Mobile Systems and Applications, Santa Cruz, CA,
December 1994.

[11] Pitoura E., Bhargava B. "Maintaining Consistency of Data in
Mobile Distributed Environments”. 15th International
Conference on Distributed Computing Systems, Canada,
June 1995.

[12] Pitoura E., Bhargava B. "A Framework for Providing
Consistent and Recoverable Agent-Based Access to
Heterogeneous Mobile Databases”. SIGMOD Record,
September 1995

[13] Yeo L. H., Zaslavsky A. "Submission of Transactions from
Mobile Workstations in a Cooperative MDB Processing
Environment". 14th International Conference on Distributed
Computing Systems, Poland, June 1994

