CLUSTERING TECHNIQUES
FOR OBJECT-ORIENTED DATABASE SYSTEMS

Sophie Chabridon Jen-Chyi Liao Yichen Ma Le Gruenwald

School of Computer Science
The University of Oklahoma
200 Felgar Street, Room 114 EL
Norman, Ok 73019-0631

Abstract

In an Object-Oriented Database system (OODB),
the interrelationships among objects and inheritance
semantics can be used by clustering techniques to
improve the performance in terms of system response
time. In this paper, we conduct an analysis to compare
three clustering strategies, Cactis, ORION, and CK, in
terms of space and time overhead. We also examine the
level, page or segment, at which clustering should take
place. The dynamic clustering technique CK is found to
be best in exploiting the structural relationships between
objects and inheritance semantics to identify an efficient
storage scheme. However it creates high overhead and is
only best suited for applications in which the Read/Write
ratio is high. To remove this limitation, we present how
segment clustering, instead of page clustering could
reduce the number of cases where a page split is
necessary.

1. Introduction

Clustering refers to storing related objects close
together on secondary storage. This means that
whenever one object is accessed from disk and brought
into the main memory, all the objects clustered with it
are also brought into memory. Subsequent access to
any of these objects is then a main memory access and
is much faster than a disk access. Clustering is used to
minimize the I/O cost of retrieving a set of related
objects. Therefore to improve the performance of a
database management system (DBMS) in terms of
response time, it is essential that an efficient clustering
strategy be utilized.

In most conventional DBMS, clustering is usually
based on grouping per relation or at a lower

1063-6390/93 $3.00 © 1993 IEEE

232

granularity. Grouping can be done on the values of an
attribute or on a combination of attributes. In object-
oriented DBMS, besides the fact that some data
belongs to the same class, additional relationships,
mainly structural properties of composite objects and
inheritance, can exist between data. This means that
new clustering algorithms are needed to address the
specificity of these systems.

In an OODB, "classes are used as a primary means
of grouping objects and searching for objects. In some
sense, classes take the place of relations. There is an
assumption that there must be system supported
mechanisms for grouping objects into collections
automatically” [5]. This remark illustrates the problem
faced by clustering techniques for OODB in that there
are many different ways objects can be clustered.

Four basic clustering options are described in [13].
1. Cluster all objects belonging to the same class in the
same segment of disk pages. This method expedites the
sequential scanning of the objects of a class. This is a
simplistic solution, similar to what is done in
conventional databases.
2. Cluster objects belonging to a class hierarchy rooted
at a user specified class.
3. Cluster objects and other objects that they
recursively reference. In this case, objects may belong
to different classes.
4, Combine options 2 and 3, and simultaneously cluster
classes on a class hierarchy and a subset of the class
attribute graph (or composite hierarchy).

In [6], various clustering strategies are proposed.
1. Composite objects: Clustering based on aggregation
relationships can be defined at run-time or within the
schema definition.
2. References: Clustering according to relationships

with other objects.
3. Object types: Clustering objects by their type (class).
This is useful only if repeated access is expected to
objects of just one type.
4_Indexes: Clustering objects by an index on their
attributes. While an index is defined on a string
attribute, this kind of clustering is good if objects are
accessed frequently in order.
5. Custom: "on the fly" clustering. For example, an
existing object may be supplied as a parameter to an
object creation procedure and the system attempts to
create the new object physically close to the existing
one,

Objects are usually stored according to one of
these rules. However, when rules do not conflict, a
multiple clustering can be performed.

Several object-oriented database systems under
resecarch or already implemented use clustering to
improve their performances. However, most of them
are only based on users' hints that must be provided to
the clustering algorithm. Gemstone [14] requires the
database administrator to specify that certain objects
are often used together and so would be clustered on
disk. The VBase system [1] allows explicit clustering
hints when objects are created. In ONTOS [2], the
strategy adopted is to allow the programmer to specify
clustering and to provide tools for reclustering when
more experience with the application permits better
choices to be made.

In this paper, we present and compare three
methods for clustering. Our motivation is to consider
methods that are significantly different from one
another and that do not only rely on users' hints. We so
intend to illustrate several solutions for performing
clustering in an OODB. We have chosen to analyze the
clustering algorithm of the Cactis system [11}, the
method followed in ORION ([12, 3], and the CK
clustering algorithm [7, 8]. We consider these three
algorithms different enough to be representative of the
current research on clustering techniques.

The paper is organized as follows. The three
clustering algorithms, Cactis, ORION, and CK, are
presented in Sections 2, 3, and 4, respectively. An
analytical comparison of the three algorithms is given
in Section 5. Section 6 examines the levels, page and
segment, at which clustering should take place.
Conclusions are provided in Section 7.

233

2. The Cactis Algorithm

Cactis is an object-oriented, multiuser DBMS
developed at the University of Colorado. It was
"designed to support applications that require rich data
modeling capabilities and the ability to specify
functionnaly-defined data" [11]. The clustering
algorithm implemented in Cactis is also used by the
Zeitgeist system [10]. The algorithm is given in Figure
1.

Repeat
Choose the most referenced object in the database
that has not yet been assigned a block.
Place this object in a new block.
Repeat
Choose the relationship belonging to some object
assigned to the block such that:
1) the relationship is connected to an unassigned
object outside the block and,
2) the total usage count for the relationship is the
highest.
Assign the object attached to this relationship to the
block.
Until the block is full.
Until all objects are assigned blocks.

Figure 1 - Cactis Clustering Agorithm [11].

It is a static algorithm in the sense that it is used
periodically when the system is idle to recluster the
database. It makes use of usage patterns which are the
total number of times each object in the database is
accessed and the number of times a relationship
between objects is crossed. Basically, clustering is done
at the page level, called block in the algorithm, and
which is the unit of a disk I/O. The algorithm tries to
"place objects that are frequently referenced together in
the same block” [11]. Proper clustering can result in
improvements of about 60%.

Some remarks can be made on this algorithm. It
does not require users hints. Instead it is based on
information determined by the usage of the database.
This can be an advantage from the point of view that
the algorithm is user-independent and no arbitrary
choice has to be made by the user. Moreover, this
method implies that the first time the system is
running, the database is not clustered since no usage
information is yet available. Then the database is
reorganized when the system is idle and the first

clustering takes place after the database has been
utilized during a period of time and statistics
information is available. The pertinence of this
information has a great impact on the system. The
algorithm performs better if the database has reached a
steady state. But this is compromised by the DB
evolution and all the possible changes that can take
place. This algorithm gives good results if "query
streams exhibit commonalities over time" [11].

3. Clustering in ORION

ORION is a prototype database system built in the
MCC Database program [3, 12]. It was designed for
applications in Artificial Intelligence, Computer-Aided
Design and Manufacturing (CAD/CAM), and Office
of Information Systems (OIS).

In [3], no clustering algorithm is given, only the
method followed is described. It considers a composite
object as a unit for clustering. By default, all the
instances of a class are placed in the same storage
segment. ORION automatically allocates a separate
segment for each class. However, for clustering
composite objects where the component objects belong
to different classes, "user assistance is required to
determine which classes should share the segment” [3].
The user can issue a Cluster message containing a
"ListOfClassNames" argument specifying the classes
that are to be placed in the same segment. The authors
propose to store a composite object in a sequence of
pages linked in the manner of a B-Tree. The authors
focus on the storage of composite objects. However,
their method allows clustering of a class hierarchy as
well. The user is free to specify any kind of grouping by
listing the classes to use for clustering.

One advantage of this method is its simplicity.
Users' hints are used to determine how to cluster
objects together. No cost model is defined and no
overhead is implied to determine what is the optimal
storage unit for an object, as it is done in the other two
algorithms we studied. This simplicity can also turn to
be a limitation of this method. The decision is left to
the user whose choice is based uniquely on the static
information given by the data model. It is not
considered whether a better clustering exists with
regard to the usage of the database. As mentioned in
[13], the "decision should be done on the basis of an
analysis of the expected frequency and cost of different
types of access”.

234

Although user hints are given at run-time (the user
sends a Cluster message), the clustering is not totally
dynamic. Reclustering seems to be performed in only
some cases. "ORION does not recluster objects in
response to an ExchangePart message' [3], even if,
when two dependent objects are exchanged between
two parts, they really should exchange storage positions
as well. This implementation is preferred for its
simplicity. Through the description given in [3], it
appears that all the instances of a class will be stored in
the same segment. All the instances of a class are
supposed to have the same behavior. This limitation is
removed by the algorithm we present next.

4. The CK Algorithm

This algorithm, that we call CK from the names of
its authors CHANG and KATZ, is detailed in [8]. A
simulation study was also performed and the results are
presented in [7]. The CK algorithm is defined in the
context of CAD/CAM applications. Several new
concepts are tightened to this algorithm and are
introduced here.

4.1. Structural Relationships

The algorithm makes wuse of structural
relationships which are: versions, configurations and
correspondence (or equivalence).

The concept of version is the easiest one to
apprehend and is also presented in [4]. An object is
viewed as a "molecular object” which has an interface
description and an implementation description. They
are represented separately in two distinct sets of
records. Objects that share the same interface but have
different implementations are called versions. They
represent various design alternatives.

A very important characteristic of OODB is the
presence of composite (complex or nested) objects.
This concept is represented through
composite/component relationships among objects. A
configuration then results from the coupling of versions
with composite objects. "A configuration is a composite
unit whose components are bound to specific versions”

8].

The third kind of relationships is equivalence. Two

objects are ecquivalent if they are alternative

representations of the same entity.
4.2, Instance-to-Instance Inheritance

Besides structural relationships, inheritance
provides also additional semantics. As in object-
oriented programming languages, a class/subclass
hierarchy can be defined for an OODB based on the
IS-A relationship. A subclass inherits the structure
(attributes' definitions) and the methods of its ancestor.
However, in OODB this form of inheritance, which is
called type inheritance, is not enough.

[15] explains the necessity of having instance or
value inheritance for CAD/CAM and Artificial
Intelligence applications. The “instance inheritance
relationship does not only transfer the existence of
attributes from one object to another, but moreover the
values of these attributes”. It is this kind of inheritance
which is used in the CK algorithm. It is called instance-
to-instance inheritance and its rationale is largely
detailed in [8]. It is aimed to provide inheritance of
information along any kind of relationship known to
the system: type-instance (from a class to its objects),
ancestor-descendent (through a class hierarchy),
composite-component (through a composite hierarchy)
or even among equivalents.

4.3. Presentation of the Algorithm

The CK algorithm's pseudo-code is given in Figure
2. Here clustering is done at the page level.

"Instance-to-instance inheritance introduces more
complexity because it allows attributes to be selectively
inherited at run-time" [8]. This run-time flexibility
requires a sophisticated approach for clustering.The
algorithm is based on inter-objects access frequencies
given by the user at data type creation time. A
frequency has to be specified for each kind of structural
relationship, e.g. 20% of access along version
relationships, 75% along configuration relationships
and 5% along equivalences. In this example, since the
frequency of accessing configuration relationships is
higher than others, a new instance will most probably
be placed in the same page as its composite objects.

When a new object is created, the clustering
algorithm determines an initial placement based on
which relationship is most frequently traversed. Then a

235

set of cost formulas is used to choose between
implementation by copy or by reference for each
inherited attribute. The combination of the relationship
traversal frequencies and the inheritance traversal costs
identifies the best candidate page. Then two cases can
happen, whether the page has sufficient space or not. In
the latter case, the algorithm can either choose the next
best candidate page which has space or split this page if
the access cost resulting from the split is an
improvement over the placement in the next best page.

The idea of using a page splitting is a very
important contribution of the CK algorithm. Page
splitting is realized by a greedy algorithm which
partitions the nodes of the inheritance-dependency
graph into two subsets that can fit into one page
individually. This algorithm is not optimal but it has the
advantage to be linear in the number of edges of the
graph, whereas an exact graph-partitioning algorithm
would be NP-complete. The CK algorithm has been
evaluated by simulation in [7]. Run-time clustering
always improves the overall system response time.
Moreover, when both the structure density and the
Read/Write ratio is high, the improvement can reach
200%.

5. Comparison of the Clustering Approaches

5.1. General Characteristics

Figure 3 summarizes the characteristics of the
three approaches we have just presented. In ORION,
the clustering unit is a segment, whereas in the other
two, clustering takes place at the page level. Although it
could bring some improvements, in all the three
methods, no other level of clustering is explored. We
discuss this point in more detail in the next section.

The CK algorithm and the ORION clustering are
dynamic and operate at run-time, whereas the Cactis
algorithm is static. In [8], it is claimed that “static
clustering is not effective for applications which require
high availability". So the method used in Cactis, where
the database is reorganized periodically, would not give
good performance in such domains. However, dynamic
clustering can create too much overhead when the
system becomes heavily loaded. For this reason, the
users of the CK algorithm are allowed to
enable/disable clustering based on the characteristics
of the operations and data of an application.

PROCEDURE Cluster_Object(larget_object)

BLEGIN

1. /* Stepl: Get initial information */
cluster_policy:= get_policy();
copy_set:= get_by_copy_set();
ref_set= get_by_ref_sct();

5. inh_page_set:= get_all_inh_page();
struct_page_set:= get_all_struct_page();
page_sct:-= inh_page_sct + struct_page_set;

/*S1cp2: calculate ref_set lookup cost for each page *#/
FOR p IN page_set
FOR r IN ref_set
10. IFrnot_inp
Begin
weight(p):= 1/(prob(p.struct_rel));
. u:]f_lookUp(p):: rel_lookUp(p) + weight(p):
ind;
7*S1ep: calentate copy _sct lookup and storage cost for each page ¢/
15. FOR ¢ IN copy_sct
FOR p IN page_set

IFcnot_inp
Bepin
wcight(p):= 1/(prob(p,suuct_rel));
20. copy_storage(p):= copy_storage(p) + size_of(c);

copy_lookUp(p):= copy_lookUp(p) + weight(p);
nd;

/*Stcp4: Calculate total cost of every page. If by_copy atuibutes are
implemented by reference, the towal cost of storing target object
in page p is represented by Total_cost(p,!). Otherwise, the cost
is given by Total_cost(p,2)

FOR p In page_set
Total_cost(p,1):= 1el_lookUp(p) ® Lookup_cost +
Copy_lookUp(p) * Lookup_cost:
25. Total_cost(p,2):= re(_lookUp(p) * Lookup_cost +
Copy_storage(p) * Storage_cost;

/*StepS: pick up best candidate page and try 10 insert the object ¢/
candickue_page:= minimuin(Total_cost);
AF (cluster_policy = no_split)
WHILE (not_fit(candidate_page))
candidate_page:= Next_min(total_cost);

30, IF ({cluster_policy = page_split) And
(not_fit(candidate_page))
Split_page(candidate_page);

END;

Figure 2. Pseudo Code for the CK Clustering Algorithm [8]

Approach
. Cactis ORION CK algorithm
nuerin
Level Page (block) Scgment Page
Nature Static Dynamic Dynamic
Require No Yes Optional
users’ hints
Bascd on Actual usage Users’ hints User-specified access
of objects and uniquely frequencies along structural
relationships relationships

Figure 3. Three Clustering Strategies

236

As we indicated ecarlier, the method used in
ORION is to let the user define how clustering should
be performed, based only on the knowledge given by
the data model. Moreover, all the instances of a class
are stored within the same segment and are supposed
to have the same behavior. This is not as flexible as
what is done in the Cactis system or in the CK
algorithm, where each object can be placed in a
different storage unit, with regard to relationships
between objects rather than between classes. Finally,
the performance of the ORION clustering is very
difficult to predict, since it depends entirely on the hints
given by the user.

We now concentrate on a more detailed
comparison between the Cactis and the CK algorithms.
First we consider the space requirements of the two
algorithms and then their time complexity.

5.2. Space Requirements

The Cactis clustering algorithm must maintain two
counters when the database is in use. One counter
keeps track of the number of times each object is
accessed. The size of this counter is not mentioned, but
we can easily guess that it has to be more than one byte
(for values larger than 255). We assume that at least a
2-bytes counter is necessary for each object. The
number of objects in the database is dynamic and varies
whenever a new object is created or an existing one is
deleted. We call N the current number of object
contained in the database.

A second counter stores the number of times a
relationship between two objects is crossed. The
number of relationships is maximum when each
existing object is connected to every other object, that
is the largest possible number of relationships is
O(N2). However, it would semantically not be correct
to connect an object to every other one. Thus, we can
expect the actual number R of relationships to be
much less than N2. In total, the space requirements
for the algorithm are: 2*N + 2*R bytes.

Additional space requirements exist concerning
secondary storage. Before reorganizing the database,
data has to be stored on an intermediate storage unit.
So the space on disk is required to be at least twice the
size of the database for the reorganization to take
place. Moreover, by the way clustering is performed by
the Cactis system, a lot of space may be wasted on disk.

237

If it happens that an object is too large to fit into a
block, a new block is simply allocated to store the large
object. The remaining space in the other block is no
longer considered. For this reason, a page split
algorithm, like what is done in the CK algorithm, could
be useful. By organizing a block such that it contains as
many as possible highly related objects, could save
space on disk and consequently the number of I/Os
required to fetch objects.

The CK algorithm makes use of a one-byte counter
for each attribute of every object present in the
database. A larger number of counters is needed
compared to the Cactis algorithm, where a counter is
for the entire object. However, each counter requires
only one byte. When it is overflowed, it is set to be 255
permanently. We call nA, the average number of
attributes per object and N the total number of objects
in the system. Then nA * N bytes are needed to
maintain the counters.

In order to evaluate and compare the space
requirements for the two algorithms, we make here
some assumptions, We consider a small database
containing 100 objects, N = 100, and assume that on
the average each object has 20 attributes, nA = 20.
With these figures, the CK clustering algorithm
requires nA * N = 20 * 100 = 2000 bytes. The space
requirements of the Cactis algorithm are presented on
Figure 4. The maximum value is obtained for the
largest number of relationships, that is R = N2 =
10000. However, as we saw previously a fully connected
database does not make much sense. Consequently, the
Cactis algorithm tends to require between 2K and 20K
bytes. This is 1 to 10 times more than for the CK
algorithm which requires only 2Kbytes.

5.3. Time overhead

The cost of the Cactis algorithm does not have a
very important impact, since it is run only when the
system is idle. However, in order to determine the
complexity of this algorithm this can be evaluated as
follows.

First, the most referenced object in the database
has to be determined. The search of a maximum over
N objects takes O(N) steps. Another solution would be
to sort the objects while storing the database on
intermediate storage by decreasing number of
references. Using an efficient sorting algorithm, this

would take O(NlogN) operations. Then, for the
selected object, the most referenced relationship has to
be found. If no specific data structure is used to store
the relationships, the list of all the existing relationships
has to be scanned. This takes O(R) operations. Finally,
in the worst case the main loop of the algorithm is
performed on each object of the database. This gives an
upper bound of O(N*(N + R)) steps for the entire
algorithm. If the maximum number of relationships is
defined, which is N2, the complexity of the algorithm is
in O(N3). This makes this algorithm very time

2N +2R

consuming. Figure 5 illustrates the time complexity of
the Cactis algorithm.

At run-time, whenever an object is accessed or a
relationship is traversed, the corresponding counter has
to be incremented. This could create a substantial
overhead, but depends largely on how low-level
computations are implemented.

100000 -

N: Total # of objects
R: # of relationships

20200 -

10000 ==

2200

1000

4004
2204
100

] —1 1 R

(=
—
o

100 1000 10000

Figure 4. Space Requirements of the Cactis Algorithm

N*(N + R)

]

N:Total # of objects
R: # of rclationships

T

100000 -

20000

T

1 IO()8 —
1000
0

Figure 5. Time Complexity of the Cactis Algorithm

238

The CK algorithm contains two parts. The first
part determines the best candidate page where to place
the new object. The second part is the page-splitting
algorithm which has a complexity of O(n) where n is
the total number of edges between the objects of the
candidate page [8].

The time complexity of the first part is detailed
here. At the beginning of step 1, a choice between
implementation by copy and by reference is made for
cach inherited attribute of the new object. It is based
on the value of the one-byte counter associated with
each attribute. If this value is larger than the predefined
update threshold corresponding to the type of the
attribute, by reference implementation is preferred.
Otherwise, the inherited attribute is duplicated. This is
explained by the fact that it is more costly to maintain
several copies of an attribute it they are updated
frequently due to consistency problems. Lines 3 and 4
of the algorithm require the set of the inherited
attributes of the object to be scanned. This takes
O(nb_attr_inh) steps, where nb_attr_inh is the number
of inherited attributes of the new object. We will
evaluate this variable by using the probability Pinh
which represents the probability for an attribute to be
inherited from an ancestor object. Then nb_attr_inh is
simply the product nA * Pinh, nA being the average
number of attributes per object that we used to
compute the space requirements in the previous
paragraph.

Then, in the same step 1, on lines 5 and 6, two
functions are called. The first one, get_all inh_page(),
returns the set of disk pages containing the source
instances for the inherited attributes. We assume that
this function requires O(P) steps in order to scan all P
pages of the database and check whether the page
contains a source object for an inherited attribute of
the new object. The second function,
get_all struct_page(), gives the pages which contain
objects related to the new object by any kind of
structural relationships such as its ancestor and
component instances. We assume as previously that this
function takes O(P) steps. On line 7, the two sets of
pages are then merged to form the set of the candidate
pages. We call N_cand the number of candidate pages.
We will evaluate this variable by using the probability
Pcand which represents the probability for a disk page
to be candidate as defined by the clustering algorithm.
Then N_cand is given by the product P * Pcand, P

239

being the total number of disk pages necessary to store
the database. P can be determined only dynamically,
after the clustering algorithm is run and that the
database is stored in a particular way on disk. For
computations to take place, we consider the worst case
where there is only one object per page, that is no way
to cluster objects was found. Thus, the value of P that
we will use is 100, which is the number of objects in the
database.

Steps 2 and 3 each contains two embedded loops.
The external loop is done for each candidate page. In
step 2, the inner loop is based on the number of
inherited attributes implemented by copy
(nb_attr_copy) and in step 3 on the number of
attributes implemented by reference (nb_attr_ref). We
can notice that the sum of nb_attr_copy and nb_attr_ref
gives the number of inherited attributes nb_attr_mh In
total, steps 2 and 3 require:

O(N_cand * nb_attr_copy + N_cand * nb_attr_ref) =
O(N_cand * nb_attr_inh) operations.

Finally, there is a single loop on the number of
candidate pages taking O(N_cand) steps. Consequently,
the total number of steps required by the algorithm to
determine the best candidate page is:

nb_attr_inh +
(N_ cand*nb attr_inh) + N_cand

= (nA*Pinh) + (2*P) +
nA*Pinh) + (P*Pcand).

(2*P) +

(P*Pcand *

With the values we assumed previously (nA =20,
P=100) and the fact that Pcand and Pinh are
probabilities, an upper bound can be defined for each
term in this expression. The first term is < = 20, second
term = 200, third term <= 2000, and the fourth term
< = 100. The third term is dominant and can be used to
represent the complexity of the entire expression.
Consequently, the time complexity of the CK algorithm
can be stated as: O(P*Pcand * nA*Pinh). This result is
illustrated in Figure 6.

When comparing Figures 5 and 6, the Cactis
algorithm is found to be much more time consuming
than the CK algorithm. It requires no less than 11000
operations and can reach a number of 1,010,000 of
operations if the number of relationships between the
objects of the database is very high. On the other hand,
the CK algorithm can necessitate a maximum of
operations of the order of 2000. However, there exists

additional time overhead for the CK algorithm. The ration is high, that is when few updates are done. This

counter associated with each attribute of every object last point is also insisted on in [9].
of the database has to be incremented whenever the
attribute is updated. This can be very time consuming. The comparison results of the two algorithms are

This explains at least partially why the CK clustering summarized in Figure 7.
algorithm performs the best when the Read/Write

P*Peand * Pinh*nA

10000 P: #of pages in the DB
Pcand: Prob. a page is candidate
nA: average # of atuibutes/object
20004 Pink: Prob. an attribute is inherited
16204
12804~
1000 ==
980 -
720 -
500 -
320 ~-
180 -+
100 4-
-
20 -}
10 }
6.01 0.1 1 Peand * Pioh
Figure 6. Time Complexity of the CK Clustering Algorithm
Algorithm Cacti . . .
Criteria actis algorithm Ck nlgorithm
2*N + 2*R
Space nA*N
requircments 2K to 20K bytes 2K bytes
Fy st tunning: update 2 counters update une counter
Time syst.idle: O(N*(N + R)) O(N_Cand * nb_atr_inh)
ovetlicad . 6 =(P*Pcand * nA*Pinh)
O(10%) o O(10°) operations <= 2000 operations
Maximum
improvements 00 % 200 %
with high Read/Write ratio
and high structure density.

Figure 7. Comparison of the Cactis and CK algorithms

240

6. Page or Segment Clustering ?

Physically, there are two levels of clustering: page
and segment levels. According to [6], page clustering,
where a page is the smallest physical unit read from
disk, is more suitable for clustering by index, reference
and composite objects. On another hand segment
clustering, in which a segment is a logical grouping
specified by the user, is more useful for type clustering
and composite objects while being used at a sufficient
coarse grain. In the three clustering methods we
presented, two of them use page clustering and the
other one segment clustering.

In the CK algorithm, page clustering is used but
this choice is not explained by the authors and no other
alternatives were explored. More precisely, in the
simulation study realized in [7], the page size is taken
as a static parameter and no experiment was conducted
to determine the impact of this parameter. It is our
belief that this parameter has a great influence over the
CK algorithm, especially because this algorithm causes
a page split when a page is full. A smaller number of
page splits could be required with a larger page size.
The algorithm as proposed in [8] was only under design
and did not consider an implementation within a
particular DBMS. Moreover, no requirement is
specified toward the operating system. So various
alternatives could have been compared. This leads us to
consider the use of segment clustering for the CK
algorithm. Using segment clustering, when a new
object is created the same principle as in the CK
algorithm can be followed to identify the best segment.
However, all the cost formulas have to be changed to
consider a segment instead of a single page.

Segment management can be done in different
ways. First, the size of a segment can be fixed by the
system or variable. When segments are of fixed size,
the number of pages they contain gives the number of
I/Os necessary to load the segment. When a segment
runs out of space, two options exist to extend it. A new
page can be allocated and linked to the segment (a
pointer must be maintained in the segment descriptor).
This is what is suggested in ORION where composite
objects can be stored in a B-tree of pages [3]. On
another hand, a new segment can be allocated and
linked to the previous one. The first option implies
some overhead to find the address of each additional
page, when all the related pages are prefetched if this is

241

provided by the buffer manager. In the second solution,
the difficulty is to find enough contiguous free space to
allocate one entire segment at a time.

With regard to the page splitting used by the CK
algorithm, segment clustering would change the
splitting radically. It may not be useful anymore if we
consider that most of the candidate pages will happen
to be present in the same segment. Consequently, new
space has to be found by extending the segment,
instead of splitting it. On another hand, a segment-
splitting would have to be used instead of the page-
splitting. All the objects present in the segment would
have to be scanned and distributed in two storage units.
Segment-splitting would of course impliecs more
overhead than page-splitting because of the larger
number of elements involved, but this would be
balanced by the fact that it would be performed less
often.

The Cactis DBMS runs in the UNIX/C Sun
workstations environment. The influence of this
environment over the implementation is not discussed
by the author of [11]. The clustering operates at the
page level by manipulating blocks of fixed size. This
size is not mentioned and the trade-off that it implies is
not discussed, but we can consider that this is a
parameter imposed by the environment. However, with
regard to the way the clustering algorithm performs,
some improvement could be obtained by allocating
contiguous blocks to store related objects. Thus less
overhead would appear during the loading of related
objects because the heads of the disks would not need
many moves.

7. Conclusions

Among the three clustering strategies we
presented, the method in ORION is the most close to
what is accomplished in conventional DBMS. A class is
considered as equivalent to a relation and is the unit of
clustering. Even if ORION allows to cluster composite
objects by putting objects of different classes in the
same segment, all the objects of a class are stored
together and are supposed to have exactly the same
behavior. Moreover, the fact that ORION relies
entirely on users' hints to cluster the database prevents
it to benefit as much as possible from the rich
relationships existing among objects.

The solution adopted by the Cactis algorithm

makes clustering a static procedure which is run
periodically when the system is quiesced. This limits the
domain of applications of this system, since it requires
periodic idle times. It also creates a substantial
overhead when the system is running to keep track of
the number of times each object is accessed and the
number of times a relationship is crossed. Moreover,
this algorithm wastes space on disk by allocating a new
block whenever an object cannot fit into a block. The
remaining space in this block is no longer considered.

The CK algorithm is the most sophisticated one
and gives the largest improvements. It is dynamic and
performs reclustering whenever a new object is created.
It is designed for the field of CAD applications and
makes use of the structural relationships and instance-
to-instance inheritance semantics to improve the
DBMS response time. However, it can create a
considerable overhead and may need to be disabled
when the system becomes heavily loaded.
Consequently, the benefits of the algorithm appear only
if the Read/Write ratio of the application is high [7].
To remove this limitation, we presented how segment
clustering, instead of page clustering, could reduce the
number of cases where a page split is necessary.

7 - References

[1] ANDREWS, T. "Programming with VBase", in
Object-Oriented Databases with Applications to
CASE, Networks and VLSI CAD, R. GUPTA and E.
HOROWITZ Editors. Prentice Hall, 1991, pp 130-177.

[2] ANDREWS, T. C. HARRIS, K. SINKEL,
"ONTOS: A Persistent Database for C+ +", in Object-
Oriented Databases with Applications to CASE,
Networks and VLSI CAD, R. GUPTA and E.
HOROWITZ Editors. Prentice Hall, 1991.

[3] BANERIJEE, J.,, H. T. CHOU, J.F. GARZA, W.
KIM, D. WOELK, N. BALLOU and H-J KIM, "Data
Model Issues for Object-Oriented Applications”, ACM
Trans. on O.LS,, Vol. 5, No. 1, Jan. 1987, pp 3-26.

[4] BETARY, D. S., W. KIM, "Modeling Concepts for
VLSI CAD Objects", ACM Trans. on Database
Systems, Vol. 10, No. 3, Sept. 1985, pp 322-346.

[5] BLOOM, T., S.B. ZDONIK, "Issues in the Design
of Object-Oriented Database Programming

242

Languages’, ACM OOPSLA'87 Proceedings, Oct. 4-8
1987.

[6] CATTELL, R, Object Data Management,
Addison-Wesley Publishing Company, 1991.

[7] CHANG, E., R.H. KATZ, "Exploiting Inheritance
and Structure Semantics for Effective Clustering and
Buffering in an Object-Oriented DBMS", ACM Sigmod
Record, Conference, 1989, pp 348-357.

[8] CHANG, E, RH. KATZ, ‘Inheritance in
Computer-Aided Design Databases: Semantics and
Implementation Issues’, CAD, Vol. 22, No. 8, Oct.
1990.

[9] CHENG, J., AR. HURSON, "Effective clustering
of complex objects in Object-Oriented Databases",
ACM Proc. of the SIGMOD Int. Conf. on
Management of Data, pp 22-31, Denver, Colorado,
May 1991.

[10] FORD, S, et al., "ZEITGEIST: Database Support
for Object-Oriented Programming’, in Advances in
Object-Oriented Database systems, Lecture Notes in
computer Science, 2nd International Workshop on
Object-Oriented Database Systems, Springer-Verlag,
Sept. 1988.

[11] HUDSON, S.E., RXKING, "Cactis: A Self-
Adaptive, Concurrent Implementation of an Object-
Oriented Management System”, ACM Trans. on
Database Systems, Vol. 14, No. 3, Sept. 1989, pp 291-
321.

[12] KIM, W., J. BANERJEE, H-T. CHOU, JF.
GARZA, D. WOELK, "Composite Object Support in
an Object-Oriented Database System", ACM
OOPSLA'87 Proceeding, Oct. 1987.

[13] KIM, W., "Architectural issues in Object-Oriented
Databases”, JOOP, March/April 1990, pp 29-38.

(14] MAIER, D, I. STEIN, A PURDY, "Development
of an Object-Oriented DBMS", ACM OOPSLA'86,
Sept. 1986.

[15] WILKES, W., "Instance Inheritance for Object
Oriented Databases”, in Advances in Object-Oriented
Database systems, Lecture Notes in computer Science,
Springer-Verlag, Sept. 1988.

