Evaluating Partitioning Techniques for Main Memory Database:
Horizontal and Single Vertical!

Yu Chin Cheng Le Gruenwald Greg Ingels

M. T. Thakkar

School of Computer Science
University of Oklahoma
Norman, OK 73019

Abstract

Performance of the two partitioning techniques,
horizontal partitioning and single vertical, is evaluated
in the context of main memory database in terms of
memory space and execution time. Issues in systems
architecture related to cost assessments are addressed,
quantitative resulls are obtained.

1 Introduction

Partitioning is the process of mapping logical en-
tities of relations to its physical counterparts. In
studying the reload problem for the MARS system
[2], Gruenwald and Eich evaluated four partitioning
techniques for main memory database (MMDB) [4, 5):
horizontal, single vertical, group vertical, and phys-
ical vertical. In their study, all procedures related
to database processing are broken down into one or
more of eight basic properties. (See Table 1.) In each
property, the four partitioning techniques are ranked
1 (worst) to 4 (best) for their performance based on
the estimated cost to execute the basic property. Per-
formance of the partitioning techniques are analyzed
in four different processing environments: retrieval,
update, schema modification, and mized environment.
The performance of a technique in an environment
is computed by summing the products of its ranks
and the frequencies that the constituent basic proper-
ties of the environment are executed. It is concluded
that horizontal and single vertical are the most viable
choices for MMDB.

The purpose of this study is to provide a more quan-
titative evaluation for horizontal and single vertical
partitioning for MMDB. In particular, we observe that

1This work was partially supported by National Science
Foundation under grant No. IR19201596.

0-8186-4212-2/93 $03.00 © 1993 IEEE

570

Table 1: Eight basic properties

3
<

oof ~3f o] | x| cof ho] =

property
number of physical pages to store a relation
loading a relation into main memory
attribute deletion
attribute insertion
attribute projection
tuple selection
tuple insertion
tuple modification

in [4, 5], although numbers are used in the ranking
system, the ranks do not reflect the difference quan-
titatively. For example, in evaluating the number of
physical pages required to store a relation, horizontal
and single vertical are ranked 3 and 4, respectively.
While this indicates that single vertical is better than
horizontal, it does not indicate how much better.

In Section 2, we first examine the issues of system
architecture that are directly related cost assessments
in implementing a basic property. As a result, we will
be able to accurately evaluate the costs related to, for
example, address translation. In Section 3 memory
space efficiency for the two partitioning techniques is
evaluated. In Section 4, we derive the equations for
discrepancies in execution time for the basic properties
incurred by horizontal and single vertical, and com-
pute the performance boundaries for horizontal and
single vertical in terms of the frequencies the basic
properties are executed. The paper is concluded in
Section 5.

2 System architecture

This section presents the foundation that is used
to derive memory space and execution time affected
by the two partitioning techniques. Specifically, we
shall examines a few designs that are closely related
to MMDB and the database parameters used in the
performance evaluation.

Physical page layout A page stores entities of a re-
lation. In horizontal partitioning, an entity is a tuple;
in single vertical partitioning, it is an attribute. Each
page is partitioned into a number of slots equal to the
maximum number of entities it can store.

Addressing Data reside in physical pages are ac-
cessed through pointers in an index structure. A
pointer can either be a logical address or a physical
address. Logical address is used in this study, and ev-
ery tuple has a unique logical address. (Note that one
tuple corresponds to one physical entity for horizontal
partitioning and multiple physical entities for single
vertical partitioning.) A logical address is dissected
into two parts: page number and offset. The page
number is mapped into a physical starting address of
a physical page, and the offset is used to calculate the
actual physical location of the tuple inside a specific
physical page.

In general, consider a page group of S pages,
with each page partitioned into T slots, each of size
W bytes. The logical addresses for the slots are
071|"')T_1vT1T+11"'72T_1:] (S—l)T,(S—
)T +1,---,ST — 1. Let PT[0..S — 1] be an array of
size S, with each element storing the beginning phys-
ical address of a page in the page group. Let L be
a logical address in the range 0..ST — 1, the physical
address of L is computed by

PT[L+T)+ W x (L mod T), 1)

where + is the integer division operator, and mod is
the modulo operator.

For single vertical, in addition to the variables for
address translation of horizontal partitioning, let m be
the number of attributes, and let A; and T; denote the
size of attribute ¢ and the number of A;’s that can be
stored in a page, then a tuple with logical address L
is mapped into m entities with physical addresses at

PLIL+T]+Aix(Lmod T;), i=0,---,m—1, (2)
where PT; is the page table for the i-th attribute.

Index structure Tuples in a relation are accessed
through an index structure constructed from a set of

671

Table 2: Analysis Parameters

[Parameter | Meaning | Values]
REL.SZ relation size (tuple) | 10%,i=1,2,---,10
TUP_SZ tuple size (byte) 50:,:1=1,2,3,4,6,9
PAGE_SZ page size (byte) 512
ATRIB_SZ; size of attribute k 5,10,15 bytes
NUM_ATRIB | num. of attributes 10,20,30

unique search keys associated with the tuples. We as-
sume that the same partitioning technique is used for
the memory space used by the index structure. There-
fore, costs related to index structure are the same for
both partitioning techniques.

Memory space management Memory space man-
agement must provide information for the free slots in
each page so that when a new tuple is inserted into
a relation, a free slot can be assigned and the logical
address of the slot can be stored in the new node in
the index structure. Also, when a tuple is deleted, the
slot must be marked free to be used in the future. A
free list of available slots is used in this study.

Database information In order to calculate the
amount of space and the execution time, specific
database information must be available. We shall
use the parameters listed in Table 2 as the sample
database information. Table 2 is a part of the list
(excluding those related to group vertical and phys-
ical vertical) compiled in [4] based on the studies
in [1, 3, 7]. In addition, we shall assume that one
main memory read takes the same amount of time %,
as one memory write, and all arithmetic operations
(+,—, X,+, and mod) cost the same amount of time,
ta.

3 Memory space

Memory space performance is modeled by the num-
ber of physical pages required to store an entire rela-
tion. The amount of main memory space used by a
relation consists of three parts: space to store data,
space for the page table, and space for the index struc-
ture. In our design, the latter remains the same re-
gardless of the partitioning techniques used. Further-
more, the number of entries in the page table is equal
to the number of pages required by a technique; there-
fore, the amount of memory used to store data in a
relation reflects the overall memory requirement. We

shall consider only the space required to store the data.
Let Py and Py denote the number of pages re-
quired to store a relation. Based on the design in
Section 2 and the parameters in Table 1, we have to
following equations.
Horizontal:

REL_SZJ 1 ®)

Py = [[BASESZ
TUP.57

Single vertical:

NUM _ATRIB

Py = REL.SZ

[e==SIC
k

To obtain the average memory space usage, we shall
assume that attributes in a tuple are of the same size.
Notice that not all combinations of parameter sizes in
Table 2 are legitimate. For example, a tuple of size
100 will not have 10 attributes of size 15. In general,
a combination is legitimate if

TUPSZ = ATRIB.SZ x NUM_ATRIB.

k=1

©)

We shall assume that the legitimate combinations of
the parameters in Table 2 are equally likely to be im-
plemented. We define the memory implementation ef-
ficiency p to be the actual amount of memory space
occupied by the number of pages used P divided by
the amount of data stored. Mathematically,

_ PxPAGESZ ©
= RELSZxTUPSZ)

Since there are ten possible relation sizes and each
with nine legitimate combinations, the ezpected mem-
ory implementation overhead of horizontal partition-
ing vs. vertical partitioning, denoted by E, is com-
puted by the next equation:

1 1
E o= 3 15202 5umasn — wva,m)
R; Aj B
1
= o2 2 (maym —mvam), ()
R; A;xBj
where R;, A;, By, represents various values of

REL.SZ, TUP.SZ, ATRIB_SZ, respectively, and
BH,A;,B. (#v,.4;B,) denote the implementation effi-
ciency of the horizontal (single vertical) partitioning
technique under the legitimate combination A; x By,
with
R; € {1000,2000,---,10000}
Aj x By € {(50,5),(100,5),(100,10),
(150, 10), (150, 15), (200, 10),
(300, 10), (300, 15), (450, 15)}.

572

Using Equation (7), we have found that E ~ 23%,
indicating that horizontal partitioning is expected to
take 23% more space to implement a relation than sin-
gle vertical partitioning.

In addition to the cost of memory space (property
1 in Table 1,) a few events in database processing are
directly related to the amount of memory space used:
loading a relation from secondary memory to main
memory (property 2 in Table 1) and reorganization of
relation (usually caused by schema modification i.e.,
properties 3 and 4, in horizontal partitioning.) In all
of these events, it is obvious that single vertical parti-
tioning is the preferable technique.

4 Execution Time

Performance of an MMDB in a processing environ-
ment is measured in execution time. The compari-
son in execution time is significantly different from the
memory space requirement. (1) We can only account
for the discrepancies incurred by the use of horizon-
tal or single vertical related to the architecture design
in Section 2, in other words, there is a cost common
to both techniques that is not accounted. (2) Prop-
erties 5 ~ 8 constitute the mixed environment. Sim-
ilar to Gruenwald and Eich [4], we consider the fre-
quency weighted cost discrepancy: the cost discrepancy
is weighted by the frequencies that the constituent
properties are executed.

4.1 Execution time discrepancy analysis

Tuple selection The basic steps of tuple selection
are (i) search the index structure and return the logical
address of the tuple, (ii) perform address translation
to map the logical tuple address to its physical equiv-
alent, and (iii) read every attributes in the tuple.

Step (i) is identical to both partitioning techniques.
The cost in step (ii) is computed by counting the arith-
metic operations and memory references in equations
(1) and (2). Since the page table is in the main mem-
ory, 1 main memory read is required to get the begin-
ning address for a physical page. From equation (1),
we see that b arithmetic operations are needed: L+ T
plus base address of the table to get the page address
accounts for two, and mod, X, and addition account
for the other three. Thus, total processing time for
horizontal to implement step (ii) is ¢, + 5t,. Similarly,
total processing time for single vertical to implement
step (ii) is 3t, + 9¢,.

In step (iii), horizontal partitioning requires one
main memory reference plus one arithmetic operation

per attribute in order to obtain the attribute bound-
aries in the tuple. For single vertical, since the at-
tributes in a tuple is known from step (iii), no addi-
tional calculation is necessary.
The execution time discrepancies incurred in tuple
selection are summarized in the following.
Horizontal:

Tsy = (NUM_ATRIB+1)xt, +(NUM_ATRIB+35) xt,
(8)

Single vertical:

Tsv =3 x NUM_ATRIB x t, +9 x NUM_ATRIB x t,
)

Tuple insertion, modification, and deletion
Tuple insertion involves the following steps: (i) get a
logical address from the free list for the newly inserted
tuple, (ii) perform address translation, and (iii) write
the new tuple. Only step (ii) incurs different cost in
both techniques. The cost discrepancies are the same
as in tuple selection and is given by (8) and (9).

The basic steps for tuple modification are the same
as in tuple selection except in the step (iii), where a
number of attributes are modified with memory write
operations. For simplicity, we will assume that all
attributes are modified. Given this assumption, the
cost discrepancy is the same as in tuple selection.

Tuple deletion involves the following steps: (i)
delete a node from the index structure, (ii) return the
logical address of the deleted tuple to the free list,
The costs of tuple deletion are the same for both par-
titioning techniques. Note that in [4, 5] the cost of
tuple deletion is considered equivalent to that of tuple
selection.

Attribute projection Projecting an attribute re-
quires reading the same attribute for all tuples in the
relation. This involves, for each tuple, (i) getting its
logical address from the index structure, (ii) perform-
ing address translation, and (iii) reading the attribute.
Steps (i) and (iii) cost the same for both techniques.
In step (i1), the physical address of the attribute pro-
jected in horizontal partitioning requires the cost of
performing address translation in (1) plus an offset:

Tpy = (REL-SZ +1) xt, +6 x REL_SZ x ta. (10)

For single vertical partitioning, the address of at-
tribute ¢ is computed using (2). However, the at-
tribute size and the number of attributes per page
information need to be looked up only once, and the

573

Table 3: Frequencies

name frequency of
fset tuple selection
foroj | attribute projection
fins tuple insertion
fmoa | tuple modification
fael tuple deletion
ftup fsel + f{n.g + fmod

offset address in looking up the page table and the
number of entries in a page table can be computed
externally, the time discrepancy is

Tpv = (REL_SZ +2) x tr+ (5 x REL_SZ +4) x ta. (11)

4.2 Performance boundary

We are now ready to derive the performance bound-
ary for a mixed processing environment which includes
tuple selection, insertion, modification, and deletion,
and attribute projection. The performance boundary
is derived based on the frequency fiup that the tu-
ple oriented properties are executed, where fiup =
fset + fins + fmod. Horizontal partitioning performs
better than single vertical if fiup is greater than per-
formance boundary. For convenience of reference, Ta-
ble 3 lists the variable names for the frequencies that
are used in the analysis. Also, we shall let ¢, = kt,,
where k > 1 and k depends on the semiconductor tech-
nology used to implement the arithmetic unit and the
main memory.

Notice that fiup + foroj + faer = 100%. Also, since
both partitioning techniques incur the same cost for
tuple deletion, the performance boundary is obtained
by equating the frequency weighted discrepancy for
horizontal and single vertical:

frupTsH + foroj TP = frupTsv + foroj TPv.

Using the relation ¢, = kt, and substituting fyro; =
(1 — fae1) = frup, we have

Frup = (l - fdez)(REL_SZ —4 — k)
™~ REL_SZ + (2k + 8)NUM _ATRIB — (2k + 9)’
(12)

The empirical study of Joyce and Warn [6] showed
that retrieval accounts for 80% of database access. No-
tice also that in update, the frequency for modification
is the highest among the three basic properties. This

95
90
85
80

10

30

ftupy %

70
65
60

1 2 3 4 5 6 7 8 9
REL._SZ, x1000

10

Figure 1: Curves of performance boundaries for mixed
environment with k = 5

allows us to set fze; to no more than 5%. With this
assumption, equation (12) becomes

0.95(REL.SZ — 4 — k)
REL_SZ + (2k + YNUM_ATRIB — (2k 1 9)
(13)

ftup Z

The performance boundary is plotted for k = 5 in
Figure 1. The curves are labeled by the number of
attributes (10,20,30). Horizontal axis is the relation
size, and vertical axis is the combined percentage fiup
that Figure 1 indicates that

if frup < 62% single vertical is better

if fiup > 92% horizontal is better

otherwise depends on relation size
and number of attributes

Clearly, the performance boundary only says when
one partitioning technique is better than the other,
but not how much. We suspect that the latter question
can only be answered when the common cost is com-
pletely accounted, or some other measure completely
different from the one we are using in the paper must
be used.

5 Conclusion

Performance of the horizontal partitioning tech-
nique and the single vertical partitioning techniques
are evaluated for main memory database, using mem-
ory space and processing time. Cost models are based
on the discrepancies incurred due to the different par-
titioning techniques used; a system architecture is
used as a basis to obtain this cost model.

574

The conclusions are (1) single vertical is about 23%
more space efficient. Since the amount of memory
space used directly affects the loading cost and reor-
ganization cost, single vertical is also preferable than
horizontal in loading cost and schema modification.
(2) Figure 1 indicates that if frup < 62% single ver-
tical partitioning is always better; if fiup > 92% hor-
izontal partitioning is always better; otherwise, the
performance of horizontal and single vertical depends
on the relation size and the number of attributes.

References

[1] D. Bitton, D. DeWitt, and C. Turbyfill, “Bench-
marking Database Systems: A Systematic
Approach,” Proceedings of Very Large Scale
Databases, pp. 8-19, 1983.

[2] M. Eich. “Main Memory Database Research Di-
rections,” SMU-CSE Technical Report 88-CSE-

35, November 1988.
(3]

R. Epstein, “Creating and Maintaining a
Database Using Ingres,” FElectronics Research
Laboratory, University of Calfornia, Berkeley,

Memo ERLM77-71, pp. 1-25, December 1977.
[4

_—

L. Gruenwald and M. Eich, “Database Parti-
tioning Techniques to Support Reload in a Main
Memory Database System: MARS,” SMU-CSE
Technical Report 89-CSE-31, September 1989.

[5] L. Gruenwald and M. Eich, “Choosing the best
Storage Techniques for a Main Memory Database
System,” 5th Jerusalem Conference on Informa-

tion Technology, pp. 1-10, October 1990.

J. Joyce and D. Warn, “Command Use in a Re-
lational Database System,” National Computer
Conference, pp. 247-253, 1983.

K. Salem and H. Garcia-Molina, “Crash Re-
covery Mechanisms for Main Storage Database
Systems,” Princeton Universily, CS-TR-034-86,
April 1986.

