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Abstract

Real-time database systems has been recently stud-
ied to meet stringent timing and reliability constraints
that observed in many application areas. In some appli-
cations, many transactions must be not only executed
correctly but also completed within their deadlines, and
some data may become invalid after a certain duration
of time. For some of these advanced applications, trans-
actions are long and complicated. A transaction model
beyond the conventional single-level transaction models
is needed to manage the complexity. In order to extend-
current real-time transactions to a nested transaction
model, several issues need to be explored or re-
examined. In this paper, we discuss two important issues:
how to propagate deadlines from a transaction to its
subtransactions and how to control concurrcnt execution
of nested transactions.

1. Introduction

In traditional real-time database systems, a transac-
tion is considered as a flat single unit of task, which
consists of a sequence of primitive actions (e.g., reads
and writes of simple data objects), with a given deadline
and/or a criticalness. The system usually schedules trans-
actions according to the given characteristics of individ-
ual transactions. Due to database consistency require-
ments, transaction rollbacks and restarts are inevitable.
Therefore, even if all transactions are initially schedula-
ble, those rollbacks and restarts may cause transactions to
miss their deadlines. In order to reduce the cost of those
events, a transaction model beyond the flat model is de-
sired to maximize system performance.

Nested transactions form a hierarchy of pieces of
work. For a nested transaction, there is a top-level trans-
action controlling the whole transaction. Transactions
nested within it are lower-level transactions. called sub-
transactions. Each subtransaction consists of cither or
both primitive actions and subtransactions. Unlike those
in single-level transaction systems in which if any picce
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of a transaction fails the whole transaction fails, a sub-
transaction's failure only affects itself and its descen-
dants. This provides failure independence and allows
subtransactions to run concurrently. Nested transactions
provide a powerful mechanism for both fine-tuning the
scope of rollbacks and safe intra-transaction concurrency
in applications with complex structures. These advan-
tages make nested transaction model especially suitable
for real-time complex and/or distributed environments.

Furthermore, it has been shown in [PLC92] that, for
scheduling policies based on the earliest deadline princi-
ple, longer transactions are discriminated against shorter
transactions. Pang et. al.[PLC92] developed a dynamic
priority assignment scheme which improves the chances
for long transactions to meet their time constraints by
shortening deadlines of long transactions. Kao and Gar-
cia-Molina [KaGM93] have also proposed a model to
overcome the bias against long tasks. However, in order
to avoid this kind of discrimination, a nested transaction
approach, which may decompose a long transaction into
several shorter transactions each of which has a shorter
deadline is more reasonable than that in [PLC92] where
transaction deadlines are altered. Comparing to the
model in [KaGM93], a nested transaction model is more
suitable for applications dealing with transactions.

Most of current real-time theories are done using the
flat transaction model. To extend them to that of nested
transaction model, several issues need to be explored or
re-examined. In this paper. we discuss and present solu-
tions for two important issues: how to propagate deadline
from a transaction to its subtransactions and how to con-
trol concurrent execution of nested transactions. The pa-
per is organized as follows. First, a nested transaction
model is given in section 2. In section 3, a discussion of
transaction deadline propagation is presented. In section
4, we deliberate conflict resolution problems. Finally, in
section S we give our future research directions.

2. Nested Transaction Models

In the traditional transaction model, a transaction
consists of a set of partially ordered atomic read and



write operations. Flat transactions are those that have a
single start point and a single termination point. Nested
transactions extend the flat transactions by allowing a
transaction to invoke atomic transactions as well as
atomic operations. A nested transaction may contain any
number of subtransactions, and every subtransaction, in
turn, may consist of any number of subtransactions. The
whole transaction therefore forms a tree, called a trans-
action tree, of (sub)transactions. In the following discus-
sion, the terminologies defined in [Moss85] are used. The
root transaction which is not enclosed in any transaction
is called top-level transaction (TL-transaction). Transac-
tions with no subtransactions are called /eaf transactions.
Transactions having subtransactions are called parents,
and their subtransactions are their children. Superiors of
a given subtransaction include all transactions on the
path of the subtransaction to the root but not including
itself. Inferior of a transaction are those transactions each
of which is part of the subtransaction hierarchy spanned
by the transaction and does not include itself. The ances-
tors (descendants) of a transaction are superiors
(inferiors) of the transaction and the transaction itself. In
this context, we will use the term 'transaction’ to denote
both TL-transactions and subtransactions.

The TL-transaction have all the properties:
atomicity, consistency, isolated execution, and durabil-
ity[HaRe83). Therefore, TL-transactions must be isolated
from each other, and, in case of failures. they must be
rolled back without side-effects to other transactions.
Subtransactions appear atomic to the surrounding trans-
actions and may commit or abort independently. A trans-
action is not allowed to commit until all its children have
terminated (committed or aborted). However. if a child is
forcibly aborted or fails (e.g., misses deadline), its parent
is not required to abort. Instead. the parent is allowed to
perform its own recovery. The possible choices of the
parent includes the following (1) retry the subtransaction,
(2) initiate another subtransaction that implements an
alternative action, (3) ignore conditions of failures. and
(4) abort. The commit of a subtransaction depends on the
outcome (commit or abort) of its superiors. even if it
commits, aborting one of its superiors will undo its ef-
fects. All updates of a subtransaction become permanent
only when the enclosing TL-transaction commiits.

In the nested transaction model defined in [Moss85].
actual work can only be done by the leaf-level transac-
tions. Only they can directly manipulate objects. Higher-
level transactions only organize the control flow and de-
termine when to invoke which subtransaction. In order
not to lose generality, he suggested that should one desire
a parent to perform some actual work, a new child can be
introduced to perform the action on the parent's behalf.
Although this might solve the problem, it degrades sys-
tem performance since the invocation of an additional
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level of nesting just for some simple primitive operations

is expensive.

In [HaRo87], Harder and Rothermel proposed a
more robust model, which allows actual work done at any
level. They used client-server to model invocation meth-
ods. A client can invoke a server either synchronously or
asynchronously. An invocation is said to be synchronous
if a calling transaction (parent) is suspended until the
invoked transaction finishes. For an asynchronous invo-
cation, the calling transaction will not be blocked by the
invoked transaction.

Both invocation mechanisms are desired in distrib-
uted real-time environments. The asynchronous invoca-
tion increases parallelism, which may, in turn, increase
the chances that transactions meet their deadlines. For
example, in a target tracing system, the application of
looking for targets and registering them can be decom-
posed so that they can run asynchronously. A desired
decomposition is described as follows. First, the possible
direction of the object is estimated by extrapolating cer-
tain previously registered positions, and it spots the ob-
ject's position. Then the transaction creates an asynchro-
nous child transaction to register the object's position and
continues to trace the object. The advantages of this de-
composition are: (1) registering and tracing are per-
formed in parallel, (2) the failure of registering would not
affect the tracing. In other situations, synchronous invo-
cation is necessary. For instance, if the validity of a data
item expires which is currently needed by a transaction,
instead of aborting the transaction, we may trigger a
subtransaction to update the outdated data item. Since the
original transaction nceds up-to-date data and cannot
proceed until the triggered transaction has been finished,
this invocation should be synchronous. Due to the power-
fulness of this approach, a nested transaction model
similar to that of Harder and Rothermel will be used in
our research in the context of distributed real-time data-
base systems. Three basic rules of the nested transaction
model are described as follows.

e Commit rule: when a subtransaction complete suc-
cessfully, it is said to have committed, although such
commitment is relative: any updates of the database
become permanent only if the enclosing top-level
transaction commits. The results of a committed
subtransaction is accessible to its parent.

e Rollback rule: when a (sub)transaction is rolled
back, all descendants of this transaction are rolled
back. regardless of their commit status.

s Visibility rule: all changes made by a subtransaction
become visible to its parent after the subtransaction
commits. Siblings will not sce the results made by
cach other. A subtransaction can access data held by
its superior. After the subtransaction has accessed
the data, the holder of the data is no longer the



original holder but the subtransaction. Thereafter.,
the previous visibility rules apply.

3. Deadline Propagation of Real-Time Nested
Transactions

Since each subtransaction acts as a unit to compete
for resources, it should possess its own deadline. Appli-
cations may or may not assign a deadline to each sub-
transaction. If deadlines of some subtransactions are not
assigned, a propagation routine is needed to fill them up.
Even if they are all assigned, it is still necessary to exam-
ine them to make sure they are consistent with each
other; for instance, deadline of a child transaction should
not be longer than that of its parent. We will discuss
deadlines propagation schemes in the following subsec-
tions.

3.1 Absolute Deadline Propagation

A simplest way of deadline propagation is that a
whole family have the same deadline which is associated
with the top-level transaction. We call this deadline abso-
lute deadline.

Absolute Deadline = Deadline of Top-Level Trans. -
Adjust.

where Adjust includes communication (if any) and
commit delay.

Apparently, this approach has problems. Assume a
parent invokes a child synchronously. Since the child has
the same deadline as it parent, it may finish within its
deadline but after it has finished there may not be enough
time left for the parent to finish before the parent’s dead-
line expires.

3.2 Normal Deadline Propagation

This approach of deadline propagation can be de-
scribed as follows.
D(Tgi1a) = D(Tpapems) — CAdj — Adjust

where D(7) denotes the deadline of transaction 7 Adjust

includes communication (if any) and commit delay; and

Cadj is conflict adjust time which will be described in the

following.

e A parent and its child run parallelly and they have
no conflicts after the child’s invocation: since they
would not block each other due to data conflicts, the
child would not cause the parent to miss its deadline
if the child finishes before the parent’s deadline.

Therefore, we have
CAdj = 0
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e (1) A parent and its child run parallelly but they may
have conflicts after the child’s invocation, or (2) A
parent invokes its child synchronously: since the
parcnt would be blocked by the child or the parent
has to wait for the child to finish and then resumes
its work, in order to let the parent have enough time
to finish before its deadline, the difference between
the child’s latest finish time and the parent’s dead-
line should be greater than or equal to the remaining
runtime estimate. Depending on the types of parent
and its child. the assignment of Cadj is as follows.
¢ Both parent and child are either soft or firm:

they will share the parent’s slack time.
ES¢(s)

ES(s)+ ES(child)
where £S(s) is the runtime estimate of the par-
ent’s remaining portion s after invoking the
child, and ES(child) is the runtime estimate of
the child. Note that the runtime estimate of por-
tion s and child’s runtime should include that of
all subtransactions invoked in portion s and the
child, respectively.

e Parent is soft and child is firm: the whole slack
time is given to the child, since the child will be
aborted if it cannot meet the deadline.

CAdj = ES(s)

o Parent is firm and child is soft: the slack time is
given to the parent, since (1) the child’s missing
deadline is not fatal, (2) the child’s shorter
deadline may increase its priority and possibly
finish earlier, and thus would increase it’s par-
ent’s chance to finish in time.

CAdj = ES(s)+ parent's slack time

CAdj = ES(s) + parent's slack time x

The final deadline would be either the one from the
above calculation or the one specified by the application
depending on which is earlier.

3.3 Average Deadline Propagation

When the normal deadline propagation is used, some
undesired situations might occur because the relative
order of the priorities for different transaction families is
not consistent. For example, there are two transactions,
T1 and T2, which have subtransactions, T11 and T21,
respectively. T1 and T21 execute on Node A, while T11
and T2 execute on Node B. If a priority assignment pro-
cedure uses deadline as the criterion, under a unified
propagation, which means a whole transaction family
have the same deadline, either the priority of transaction
family T1 is higher than that of transaction family T2 or
the priority of transaction family T2 is higher than that of
transaction family T1. On the other hand, under the



normal propagation scheme, it is possible that on Node A
the priority of T21 is higher than of T1 and on Node B
the priority of T12 is higher than that of T2. Assuming
T1 and T21 have data conflicts, T11 and T2 have data
conflicts, and a priority abort conflict resolution scheme
is employed, mutual aborts may happen. That is T11
aborting T2 and T21 aborting T1, and thus results in
both transaction families T1 and T2 being aborted. It is
also possible that on Node A the priority of T1 is higher
than that of T21 and on Node B the priority of T2 is
higher than that of T11. Assuming T1 and T21 have data
conflicts as well as T11 and T2 have data conflicts, T21
has to wait for T1 to release the conflict data, and T11
has to wait for T2 to release the conflict data. But T and
t2 cannot release the conflict data because their inferiors
need more data (two phase locking). Therefore, a dead-
lock occurs. The outcomes which are caused by this pri-
ority reversal are not desired in real-time database envi-
ronments. The average deadline propagation avoids this
priority reversal problem by assigning every transaction
in the same family the same deadline.

n
Average Deadline = %Zdeadline(Ti)

i=1
where #» is the total number of potential subtransactions
in the transaction family 7, and 7; ’s are substransactions
of 7. The deadlines of subtransactions are derived from
the normal deadline propagation scheme, and are called
virtual deadlines in order to distinguish with actual
deadlines.

4. Conflict Resolutions

The serializability of nested transactions can be en-
sured via locking protocols. The nested transaction model
we adopted here is from the work done by Harder and
Rothermel [HaRo093]. They extended the locking rulcs
proposed in [Moss83] to include downward inheritance.
Readers are referred to [HaRo93] for detailed locking
rules.

Lock-based concurrency control would cause prob-
lems under the environment of real-time nested transac-
tion model. Some of the problems and their solutions arc
discussed in the following sections.

4.1 Priority Inversion Problem

Here a transaction's priority is said to be the transac-
tion's position in the ready queue, which is unique and
resulted from a priority assignment scheme. In the nested
transaction model, a parent and its children can run con-
currently. Therefore, they should have different prioritics.
Based on different priority assignment schemes, a parent
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may have either a higher or lower priority than those of
its children.

Most real-time systems utilize priorities to maintain
predictability. The fact that higher priority transactions
must be executed before lower priority transactions is
essential for the correctness of real-time systems. In
many database systems, the two-phase locking protocol
has been used to guarantee serializability. However,
when a priority-driven scheduling scheme and the two-
phase locking protocol are integrated together in a real-
time database system, a potential problem of creating
priority inversion arises in which a higher priority trans-
action is blocked by lower priority ones. The situation
contradicts the purpose of priority assignment which en-
sures that higher priority transactions execute before
lower priority ones. Even worse, this kind of blocking
delay may be unbounded [SoCh90].

Similar to that in a flat transaction model, the un-
bounded priority inversion problem also happens in a
nested transaction model and can be illustrated by the
example given in Figure 1 in which 7T denotes a transac-
tion or subtransaction, R/d/ and W{d] read lock and
write lock on data itcm d. respectively.

T1
1" T11 L
20 T12 priority=2
T1l1 T12
1 R{c] 1 R[a]
priority=3 priority=9
T2
1’ T21
priority=1
T21
1 W(b) .
2 W[e) priority=5
T3
1 R({d]
priority=7
Figure 1. An Example of the Unbounded Pri-
ority Inversion Problem

In this example, T2 invokes T21 with priority 5 and
waits for the later to commit. Now, T1 with priority



2 invokes T11 and T12 which are assigned priori-
ties 3 and 9, respectively. Then, T1 waits for T11
and T12 to commit. After T11 commits, the read
lock of data item c is inherited by T1. T21 gains the
CPU but it finds out that it has a conflict with T1 on
data item ¢ which is retained by TI; therefore, it
waits for T1 to release ¢. Now T12 with priority 9
gains the CPU. At this moment, T3 arrives and is
assigned priority 7. Since there are no conflicts
between T3 and T12, and T3 has a higher priority
than T12 does, T3 preempts T12. Thus, T2 can be
indirectly blocked by some lower-priority transac-
tions indefinitely even if they have no conflicts with
it. Some approaches to avoid this problem are dis-
cussed in the following subsections.

4.2 Priority Inheritance Protocol

In the above example, T2 has to wait for its child
transaction T21 to commit; which causes a priority in-
version situation to occur. To avoid this, when a transac-
tion is waiting for its children to commit and the parent
has a higher priority, all its inferiors are promoted to
higher priorities similar to its own priority. We do not
use the “same priority” because a priority is unique in our
system. The relative order among those inferiors will be
kept the same. In case its inferiors have higher prioritics
than it, the inferiors run on their own priorities.

For other situations which also occur in flat transac-
tion models such as a higher priority transaction is
blocked by a lower priority one due to data conflicts, a
scheme similar to the priority propagation scheme pro-
posed in [Haqu93] can be used to avoid unbounded pri-
ority inversion. In (his scheme, the lower-priority onc
inherits the higher-priority and immediately propagates
that priority to all its family; the entire family then would
exccute at the higher priority. Thus, the relative priority
order will be preserved. The transitive property of the
priority inheritance protocol in flat transaction models
also applies in the nested transaction model.

4.3 Priority Abort Protocol

Whereas an abort in flat transaction modcls will not
cause cascading aborts if the strict two-phase locking
protocol is employed, in nested transaction modcls
aborting a subtransaction may lead to aborting several
subtransactions. These aborts may not only involve the
subtransaction's descendants but also its ancestors and
siblings. The following example illustrates the problen.

« TI1 has already completed. T12 completes and a
read lock of data item o and write lock of data
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item a are inherited by T1. Then, T1 keeps those
read/write locks in the retain mode.

e TI requests and is granted a read lock on data
item a. Now, T1 keeps the read lock on data a in
the hold mode.

e TI invokes subtransaction T13. T13 requests and
is granted a read lock on data item b.

e T2 with priority equal to 3 arrives and obtains the
CPU. T2 requests a write lock on data item b
which is held by T12.

Assuming T11 does not include step 2, if T2 aborts

T13, then T13 is the only subtransaction needed to be

aborted and restarted. If T11 does include the 2nd op-

eration (write b), then T11 and T13 should be aborted

(conflict on data item b). Due to T12's reading data

item d which has been modified by T11, T12 should

also be aborted. T12's abort finally will cause T1 to be
aborted because of T1 reading data item a which was
written by T12.

T1
T11
T12
R[a]
T13

SN

T11
1. wW(d] 1.
(2. wibl) 2.

T12
R[d] 1.
wWla] 2.

T1Z2
R{b]
Rie]

Priority=5

T2
1. W[b]

Priority=3

Figure 2 An Example of Cascading Aborts of
Subtransactions

From the above example, aborting subtransactions
can cause other subtransactions of the same family to be
aborted. and even though some of these subtransactions
may have committed. Therefore, an efficient search
method needs to navigate through a transaction tree to
determine which subtransactions should be aborted when
a subtransaction aborts.

The priority aborted protocol prevents priority in-
version by aborting low priority transactions when con-
flicts occur[AbGMS88]. In the nested transaction model,
aborting a low-priority transaction by a median-priority
transaction may cause high-priority transactions to be



cascadingly aborted. This violates the spirit of priority
abort protocol. Following is a solution to this problem.

For every transaction, there are two priorities asso-
ciated with it. One, called assigned priority, is given by a
priority assignment procedure, and the other one, called
virtual priority, is derived from the context of its family.
The virtual priority of a transaction is the maximum as-
signed priority of its descendants, and when a subtrans-
action inherits a lock from one of its superiors, it also
inherits that superior’s virtual priority. The CPU dis-
patcher is based on the assigned priorities, and conflict
resolution is based on virtual priorities. When two trans-
actions have conflicts, if the lower-virtual-priority trans-
action holds the needed data, the transaction with a
higher virtual priority would abort the one with a lower
virtual priority. Otherwise, the transaction with a lower
virtual priority would wait. The above scheme may have
the priority inversion problem. For example, a low-
assigned-priority but high-virtual-priority transaction
may block a high-assigned-priority but low-virtual-
priority transaction. In order to avoid the priority inver-
sion problem, the priority inheritance protocol discussed
in the previous section would be incorporated into this
scheme.

S. Further Work

The normal deadline propagation scheme preserves
the true urgency of transactions but suffers from the pri-
ority reversal problem. the absolute and average deadline
propagation schemes avoid the priority reversal problem
but cannot reflect transactions’ truc urgency. We are cur-
rently conducting simulations to compare the perform-
ances of different combinations of deadline propagation
and conflict resolution schemes. The results may help us
understand these effects better.
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