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Abstract

As in conventiond DataBase Management Systems (DBMSg), to dlow users to dfidently
access and retrieve data objects, a MultiMedia DataBase Management Syssem (MMDBMS) must
employ an effective access method such as indexing and hashing. This paper provides a survey of tree-
based multidimensond indexing techniques for MMDBMSs that maintain image data represented as
feature vectors. These techniques support such data while maintaining desirable characteristics of a B-
tree, an index structure most commonly used in traditiond DBMSs.

In this survey, we provide descriptions of each tree as wdl as give examples of the different
data organization schemes. We aso describe the advantages and disadvantages of using each
technique. In addition, we provide classifications of the trees usng severd different properties. These
classifications should assst researchers in identifying the strengths and weaknesses of any new indexing
technique they develop as well as help users determine the most gppropriate data structure for their
goplications.

1. Introduction

An index is desgned b facilitate searching for data records. In an index for a traditiona
DataBase Management System (DBMYS), the values of a search key are sorted together. Generdly,
addresses are attached to the values that point to the locations of their associated datarecords. Using
the search key values, then, a data record can be located quickly. In addition, this type of data
sructure supports locating records with their search keys in between a range of values. Thisis in
contrast to other data access methods like hashing [KS91].

In a MultiMedia DataBase Management System (MMDBMSS), users should be able to retrieve
the data as efficiently as they can in a traditiond DBMS. So, the images stored in an MMDBMS
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should be indexed. Unlike traditional data, however, images are complex. Attempts to reflect this
complexity usualy result in images being represented as a set of vaues or atributes. For example, an
image may be represented by the color of its primary object, the chain code representing the shape of

that object, and a Boolean vaue indicating whether or not the image is a landscape.  Such a st of

attributes is referred to as a feature vector. When represented in this manner, each image becomes a
point in a k-dimensond space, where k is the number of features in each vector [FAl96]. Figure 1.1
illudrates this usng a three-dimensiond feature vector. The vector contains the vaues 3.5 in the X-

dimendgon, 0 in the Y-dimendon, and 8 in the Z-dimenson.

Figure 1.1 - Point in Three-Dimensional Space

Such a feature vector can be created for any image by applying some feature extraction
dgorithms to it.  When the same group of generd dgorithms are gpplied to the set of images in an
MMDBMS, the images would then be represented as feature vectors with the same dimensons. This
means that they can be treated as different points on the same k-dimensiond space.

When deveoping indexing methods for image data, then, researchers often operate under the
assumption that the images are represented as feature vectors in the same multidimensiona space. To
access data of this type, any of the dimensons should be used. So, for an indexing technique for an
MMDBMS to perform efficiently, it must be desgned to search dl dimengions of the data.

The indexing technique used in an MMDBMS should be dble to efficently iy severd
different types of queries. In [FA96], the types of queries are classfied into three categories. The first
type is range queries that ask the system to return dl data dements that are contained inside or
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intersect with a specified region of the multidimensona space. This dlassficaion adso refers to those
queries that request images containing a partticular set of attributes, caled subpattern matching
[LIF94]. Note that the specified region could be as smal asa single point. In this case, the query isan
exact match or point query.

As an example, consder the three-dimensiona space displayed in Figure 1.1. A range query
for this domain could be to return the points with values in the X-dimension, between 0 and 2, valuesin
the Y-dimension between 1 and 2, and vaues in the Z-dimension between 0 and 5. Figure 1.2
illustrates the region of space specified by this query as shaded. Any data eements thet are contained in
this region would be returned in response to this example query.

Figure 1.2 - Three-Dimensional Range Query

The second type of query listed in [FA96] is cdled a nearest neighbor query. This query
describes those queries in which the users request the n data dements that are the most amilar to a
gpecified region of the multidimensond space. This, of course, requires the MMDBMS to have a
definition of "mogt Imilar".

An example of this query isilludrated in Figure 1.3. Using the Euclidean Distance as a measure
for amilarity, a user wants the top two images most smilar to the point &3, 0.5, 4ii Thistriple is the
query point and is represented by the black point in the figure. The other points represent the fegture
vectors of the images in the database. The points that are shaded gray indicate the vectors that satisfy

the query.
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Figure 1.3 - Two Nearest Neighbors Query

The third type of query according to [Fal96] is a spatial join. These are queries that return
pairs of data dementsthat are amilar. An example of thisisto find the redundant images in a database.
For these queries, as with the nearest neighbor queries, a definition of smilarity is needed. Satisfying
these queries in an MMDBMS involves some function that takes two images as input and returns a
scdar vaue as output.  This vaue, called the distance, is then used as a measurement of the smilarity
between the two images. The god of this type of query, then, isto find pairs of images whose distance
is less than some specified vdue.

Figure 1.4 illugtrates an example of aspatid join. Init, Smilar points are defined as those whose
Euclidean Digance is smdler than 2. The only two points that have this property are shaded gray in the
illugtration. So, in response to this spatia join query, the MMDBMS would return &1, -2, -1fiand
0.5, -2, 0i
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Figure 1.4 - Spatial Join

Appropriate multidimensond indexes are needed to efficiently ®lve each of above queries.
Firg, for range queries, the index should provide an ordering of the data. Starting from the minimum
vaue of any dimension, the index should facilitate successvely moving to the next highest vaue until the
maximum is reached. For nearest neighbor queries, the index should maintain information about the
distances between data lements. 1dedly, the MMDBMS should be able to move to the next closest
neighbor of a data point using the index. Findly, the index should hep satisfy spatid joins by grouping
together points that are near one ancother. Thus, appropriate multidimensona indexes provide an
ordering of the data, and group smilar e ements together.

This ability to order data is an advantage of indexing when compared to other data access
methods such as hashing. This is because it is difficult to desgn an effective hashing function that
preserves order [KS91]. One of the advantages of hashing, however, is that it alows the MMDBMS
to directly compute the address of a data point, while indexes force the system to search for it using
some data structure. This means that indexes are generaly dower.

To reduce the time an index takes to locate data items, we need to minimize the number of data
accesses it uses during the search.  This can be accomplished using a tree-based index that stores the
data dements in its leaves. Beginning a the root, we can traverse a single path down to one of its

leaves to locate a particular data point. Thus, the number of steps a tee uses for searching is
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proportiond to its height. Because of this, much of the research into multidimensiona access methods
has been focused on developing tree-based indexes.

In addition to storing the k-dimensiona points described earlier, many of the proposed trees are
designed to store geometric shapes. These trees store the shapes using their Minimum Bounding Region
(MBR). This refers to the smalest region, usudly rectangular, that encloses the entire shape. Since
these trees are storing regions, they have to resolve different issues than structures that do not use
MBRs, such as mantaning overlapping data.  This difference means that the multidimensond tree-
based indexes that use MBRs should be categorized separately from the ones that do not.

This paper provides a survey of both types of the existing multidimensiona tree-based indexes.
The remainder of it is organized in the following manner:  In Section 2, we will lig the basic
characterigtics of tree-based multidimensona indexing techniques. In Section 3, we will describe
indexing trees that do not use MBRs, and in Section 4, we will describe those that do. In Section 5, we
classfy the indexing structures based on the properties they use to organize data. Findly, in Section 6,

we will summarize and indicate directions for future research.

2. Requirementsfor Tree-Based Techniques

A B-tree is one of the most popular methods in databases for indexing traditiond data. The
data sructure alows efficient insertions and deletions while remaining baanced [Com79]. These
properties should be present in a tree-based indexing structure for multidimensiond deta aswell.

Unfortunately, as it is defined, the B-tree is ingppropriate for multidimensond data. The data
structure uses a single key to index the data records. To use the B-tree with multidimensiond deata, the
data must be converted to asingle dimension. One method of accomplishing thisis to concatenate al of
the attributes together into one long single-dimension dring for each data object. The main drawback to
this goproach is that the dimenson tha is ordered firg in the long sring will have the priority in
determining the distance between two data objects. Another drawback is that it is difficult to satisfy

range queries using this technique [Kum94].
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Researchers would like an indexing structure that is as effective for image data as a B-tree is for
traditional data. Consequently, most of the research in this area has been directed to modifying the B-
tree so it can effectively index multidimensiond data. This means that most of the proposed treesin this
paper will be variants of the B-tree. So, to describe these trees, it will be necessary to first describe a
B-tree.

The B-tree indexes rdations using their primary keys. In this tree, each node contains alist of
key vaues and pointers. The tree limits the number of key vaues each node may contain. The number
of vaues mugt be less than some maximum, M, and greater than some minimum, m, where M = 2m.
The pointers refer to subtrees that only contain data elements grouped in the ranges created by the key
vaues. For example, say anode had a set of k values x, X, ... , X. One pointer would point to the set
vaues less than . The next would point to the set of vaues between x; and x,. The next refersto the
st of vaues between x, and x;. This pattern continues, and the next to last pointer in the node refersto
the values between x; and x.. Findly, the last pointer refersto the vaues larger than x.. [Com79].

An illudration of this tree is given in Figure 2.1. In this example, the vadue of M equas 2, 0
each node contains either 1 or 2 vaues. The root contains vaues 16 and 30. Its left child points to
vaues that are less than 16, and its right child points to vaues greater than 30. Findly, its middle child
points to values between 16 and 30.

16 30

Figure2.1- A B-Tree

Since the multidimensiond index trees are based on the same data structure, they share amilar
characteristics.  Each node of the index trees corresponds to a specific section of a multidimensiond

data space, and each of its subtrees corresponds to specific subsections. In addition, each node stores
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a set of vaues and pointers, like their counterpartsin aB-tree. The set of vauesidentifies the region of
gpace corresponding to the node. For example, if the node represented a rectangular region of data
gpace, the vaues would represent the upper and lower bounds aong each dimension. The set of
pointers refers to the children of the node. If the node is a ledf, these pointers refer to the actua data
elements.

Also like the Btree, each node has a limit on the number of regions it can contain, bounded
above by some M, and below by somem £ M/2. These limits are important when congdering inserting
and deleting data points. If a node is full, meaning that it aready contains M data Space partitions,
inserting a region into it requires that a different region be removed and stored dsawhere. Generdly,
this requires a reorganization of an entire section of the tree. In Figure 2.1, an example of afull node is
the one that contains the values 21 and 28.

One method of reorganization involves deleting some of dements of the full node, and
reinsarting them. A more common method, however, is to creste a new sbling of the full node and
gore some of the data regions indde it. This operation used in the method is cdled a split, and is
illugtrated in Figure 2.2. To insert the vaue 25, the node containing 21 and 28 must be split. So, anew
sbling to that node is crested by adding a right child to the root. The value 28 is stored in the shbling.

This dlows the new vaue, 25, to be stored in the root.

16 16 25

= >

5 10 21 28 5 10 21 28

Figure 2.2 - The Split Operation

When a shling is created for a node, a new pointer must be added to its parent. The parent
could be a full node, which means that it would aso have to be split.  This means that the splitting
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operation can propagate upwards. For some of the treesin this survey, however, the splitting operation
can aso propagate downwards, meaning that the children of the full node may be split aswell.

Similarly, a delete operation on a node containing m data regions will result in a node containing
too few elements. In these cases, the contents of the node will have to be combined with the contents
from other nodes. This operation is caled a merge which, like the splitting operation, can draméticaly
reorganize the structure of atree.

In the following sections, we will describe the multidimensiond tree-based indexes with these
characteristics. We will ligt their unique approaches to partitioning the data space as well as describe
their advantages and disadvantages.

3. Indexing Techniques Without MBRs:

The indexes described in this section are designed to store multidimensiona points. In them,
each node corresponds to a specific region of the data space, say R. The children of the nodes
correspond to subregions of R. The nodes at the leaves contain pointers to the data e ements that are
contained in their respective regions.

The index trees in this section differ from one another based on their dgorithms for splitting and
cregting the subregions for an internd node. Each method of partitioning a region has its own
advantages and disadvantages. These properties are described in the following paragraphs:

K-D-B Tree:

The K-D-B tree was presented in [Rob81]. As described in Section 2, each of the internd
nodes stores values to idertify a section of the multidimensona data space, and a set of pointers
referencing its children. The section identified by a node does not overlap with any of the regions of its
sblings, and are crested from splitting the larger regions corresponding D its parent.  This plit is
performed aong a single dimenson. The dimension used for splitting aternates according to a round-
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robin dgorithm for dl of the dimensions in the feature vector. This means that an ordering mugt exist for
the dimensons.

The splitsin the K-D-B tree are made in order to divide the data points in the resulting partitions
as evenly as possible, and to minimize the number of splits. So, each region is split independently of the
other partitions in the data space. This mears that other partitions do not have to be considered when
gplitting adataregion. [Rob81].

Figure 3.1 illugrates the data space partitioning for the K-D-B tree usng the dternating
dimensons. The data points are labeled with letters, and the regions are labeled with numbers. The
lines in the data pace indicate the divisons. For example, the firgt division partitioned the data into the
two regions containing 1234 and 5678. The figure dso illudrates that the next division in the left region
occurred adong the other dimension, and partitioned the data into regions 12 and 34. These are the

regions that would be stored in a B-tree, asdisplayed in Figure 3.2.

3 4 |7 8
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1 2 R 6
5

Figure 3.1 - Data Space Partition for the K-D-B Tree
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Figure3.2 - K-D-B Tree Corresponding to Figure 3.1
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G-Tree

In the G-tree of [Kum94], the properties of a B-tree are combined with the properties of agrid
file. The grid file is a data access method that divides the address space dong each dimenson. Thefile
is S0 named because the divisons occur in a grid-like fashion. Each feature vector in this data structure,
then, is mapped to the closest multidimensiond grid point in the address space [NHS34].

The Gtreeis a badanced index structure thet, like the K-D-B tree, divides the data spaceinto a
st of nonoverlapping, rectangular regions. When a split occurs to a full node, its corresponding region
is lit in haf with respect to the area of the region. Thisis in contrast to the K-D-B treethat solitsin
order to obtain an even number of data points in each region.

The salit is performed dong a sngle dimension, and the dimenson used dternates usng the
round-robin scheme. Again, this implies that the dimensons must be ordered. Since the dimension
dternaes in an ordered fashion, a unique string can be used to identify each partition. Because each
Split creates two new partitions, the identifier can be abinary string.

S0, the dimengion used for splitting dternates on each levd of the tree. In addition, Since a
region is formed by dividing another in haf, the vaue used for splitting dso does not have to be stored.
This means that the postion of each node in the G-tree directly identifiesits corresponding region. So,
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athough its splitting procedure is more redtrictive than the K-D-B tree, the G-tree has the advantage of
requiring less storage. [Kum4].

Figure 3.3 illudtrates the data space partitioning for the Gtree. Asin Figures 3.1 and 3.2, the
data points are labeled with letters, and the nonempty regions would be stored in a Btree. These
regions, however, are labeled by the binary strings corresponding to its location. For example, the data
regions on the left of the firg divison are labeled beginning with O, while the ones on the right begin with
1. Smilarly, inthe left haf of Figure 3.3, the data regions a the top are identified starting with 01, while
those a the bottom are identified starting with 00.

01

cCD
0011 I

B A
000 0010

Figure 3.3 - Data Space Partition for the G-Tree

MBT-Tree:

The MB*-tree, presented in [YVD95], is so named because it is a modification to another
common variation of the B-tree called the Bf-tree. In the B -tree, each of the data valuesis stored in
the leaves, copied in the interna nodes in the tree whenever necessary. The leaves are linked together
S0 that they may be searched quickly [Com79)].

Like the G-tree, the MB™-tree partitions the data space into severad digoint, rectangular
regions. Also like the G-treg, the regions are ordered, and the tree is baanced.

The MB™-tree partitions the data space by dividing it with severa dices dong the first
dimenson. As each partition becomes full, it must be solit. The splits occur dong the first dimension
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until the resulting strips become too thin, meaning that the width is smdler than some predetermined
vaue. When this occurs, the data region is divided independently of the other regions adong the second
dimenson. The region will continue to be salit in this manner until the strips become too thin with
respect to the second dimension. At this point, the next dimension is split. This pattern continues as
new elements are added to the tree. [YVD95].

So, one of the advantages of the MB*-tree is that unlike the G-tree, te dices dong a
dimenson may occur anywhere. So, if there are a large number of data points in a region clustered
together, the MB™-tree may il split the number of data elements evenly. This decreases the number of
levels in the tree, and thus reduces the time spent for searching data eements. The disadvantage is that
the value used for splitting must now be stored a each leve.

Figure 34 illustrates a two-dimensiond data space partitioning for the MB*-tree. Again, the
data points are labeled with letters. The data regions, however, would be stored in a Bf-tree. These
regions are labeled using the order of the dimensons. For example, the data regions on the left are
labeled beginning with O, the labels in the middle begin with 1, and the labels on the right gart with 2.
The second number indicates the position of the region aong the next dimension.

These labels can be used to order al of the data regions. With this single ordering, the data
regions are arranged in a Bt -tree. This dlows the search agorithm to directly move from one region to

the next by using the linked ligt of leaves. [YVD95].
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H
C 12 N
01 21
111
D
3 0
F 20
F P
00 K10 L

Figure 3.4 - Data Space Partition for the MB*-Tree
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BV-Tree:

The BV-tree was presented in [Fred5]. It was designed to overcome one of the disadvantages
of the K-D-B tree that can occur when an insertion of an ement into a data space partition causes its
corresponding node to split.  Specificaly, the split may propagate downward, meaning that the full
node' s children may have to be split dong the same divison used to split the node itsdf. Thisis a
disadvantage because the divison that separates the node's data ements evenly may not divide its
children evenly. So, it is possible that many nodes in the tree may become sparse [Fred5, LS90].

To avoid this problem, the BV-tree uses the concept of promoting data space partitions during
golits. A partition is promoted by moving it from its current node in the BV-tree to its parent. Thisis
done whenever one of the data space partitions developed from a split is completely contained inside
another partition below it. The lower one must be promoted to the leve of the higher partition and is
referred to as its guard. So, ingtead of the splitting operation propagating to the lower partition, it is
smply promoted. [Fred5].

An example of a promotion is displayed in Figure 3.5. Assume Data Space Partition 1 is a
subset of Partition 5, the shaded region. Partition 5, then, must be promoted aong with its children so
thet it ison the same level as Partition 1. After this promotion, Partition 5 isthe guard of Partition 1.

I

7

Figure 3.5 - Promotion of a Data Space Partition in the BV-tree.

One of the drawbacks that arises from promoting guards is that the searching agorithm defined
for the BV-tree in [Fre95] is more complex. Although promoted, the guards must be searched as if

they are dtill at their original position inthetree. This requires storing them as the search proceeds down
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the tree to the leaves. At each leve in the tree, the appropriate guard must be compared with the
current node to determine the next child to be accessed in the searching dgorithm. [Fre95].

hB-Tree:

Like the BV-tree, the hB-tree or holey-brick B-tree of [LS90] was designed to overcome the
disadvantages arising from splitting full nodes in K-D-B trees. To prevent the splits from propagating
downward into the children, the hB-tree uses the concept of “holey-bricks’. This refersto the regions
that form when the data space is partitioned.

To divide the data space, the divisions of the region may occur dong more than one dimension.
This permits cregting rectangular holes in the region by partitioning dong pieces of severa dimensons.
This gives more flexibility in how the data is partitioned. This flexibility provides a solution for the
gtuations where cutting through a node's region using one entire dimenson would mean splitting the
subregions of the children.

Not only does this prevent splits from propagating downwards, but it dso distributes data
elements evenly in Stuations where a single-dimensiond cut cannot. To illugtrate, consder the example
presented in [LS90]. It is based on a hypothetica set of data points arranged in a plus sign in two-
dimensond space. One sngle-dimensiond divison of the data will not result in an even number of
points in the new partitions. One of them will contain at least 10 of the 13 data points. Figure 3.6
illugtrates this uneven split of the data points by dividing the data points into sets S1 and S2.

To divide the data more evenly, a two-dimensiond split of the rectangular region must be used.
Such a divison dlows the hB-tree to create two partitions where one contains six points, and the other
contains seven. Figure 3.7 [LS90] illugtrates such a two-dimensiona split of the data points into sets
Sl'and S2'.
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S1 S2

(]
Figure 3.6 - Single-Dimensional Split of Data Points [L SO0]

St S2'

[ )
Figure 3.7 - Two-Dimensional Split of Data Points [L S90]

A disadvantage of this indexing scheme is that a more complex representation is required for
goring the nodes. This is because a node now potentialy corresponds to a rectangular region of the
data space with several holes removed. Both the rectangular region and its holes must be represented in
the node. In addition, as defined in [LS90], many of the nodes of the hB-tree may have more than one
parent which means that this data Structure is actudly not atree. Despite this, a data dement can be
located by traversing only one path from the root to aleaf. [LS90].

VP, MVP-Trees:
Although many trees partition the data based on their positions dong a dimension, the Vantage
Point Tree, or VP-tree, introduced in [Yia93] uses a different technique. At each node in the treg, it
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selects one of the data points to function as a vantage point, and the divison of the remaining data points
is based on their distances from it. This is accomplished by sorting the data points based on their
distances from the vantage point, then dividing them into n groups for anary VP-tree. Thedivisonis
performed so that the number of data pointsin each partition is as even as possible. Becauseit is based
on the distance from a point, the partitions of a VVP-tree are spherica instead of rectangular. [Yia93,
Chio4].

One of the advantages of the VP-tree is that it is naturdly suited to solve nearest neighbor
queries since the divisons of the data points are based solely on their reative distances from one
another [Yia93, Chi94]. A disadvantage, however, is that when the data space has alarge number of
dimensions, the partitions become very thin. Thisresults in an increase in the number of branches of the
tree that may be searched [BO97].

Because of the disadvantage, a modification to the VP-tree was proposed in [BO97]. It is
cdled the Multi-Vantage Point Tree (MVP-treg). Instead of using one vantage point at each node, the
MVP-tree uses two. The first vantage point is used to create m partitions, where m is the order of the
tree. In each of these partitions, the second vantage point crestes m more divisons for a total of NP
partitions. The advantage this gives us is that we can create more divisons per internad node of the
index tree. Thisincreases the fanout, which reduces the search time. [BO97].

Figures 3.8 and 3.9 illudrate the VP-tree and MV P-tree spherical data space partitioning,
respectively. Again, the data points are labeled with letters. In Figure 3.8, the data points are
partitioned into three groups based on vantage point V. The first group conssts of the data éements
that are the closest to V, which are A, B, C, and D. The second group contains the next closest data

eements, specificdly E, F, G, and H. Thelast group contains the remaining dataelements|, J, and K.
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Figure 3.8 - Data Space Partition for the VP-Tree

In Figure 3.9, four data space partitions are created from two vantage points, V1 and V2. The
firgt vantage point divides the data into two groups, one conssting of A, B, C, and D, and the other
congging of E, F, G, and H. Vantage point V2 divides each of these partitions into two more groups.
Based on ther disances, A and B would belong in one partition, and C and D in another. Similarly,

points E and F would be in a divison separate from points G and H.

Figure 3.9 - Data Space Partition for the MVP-Tree

LSD-Tree

The LSD-tree, or Loca Split Decison Tree, was presented in [HSW89]. Thistreeis so named
because the criteria used for splitting is performed independently for each rectangular partition. The split
is not redtricted to any specific dimension or whether or not it must divide the data space in hdf. This
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means that we may split usng any direction and any vaue we choose. A possble partitioning is
illugtrated in Figure 3.10.

20

15

0 10 15 25

Figure 3.10 - Data Space Partition for the LSD-Tree

This flexibility has a drawback, however. Since any dimension can be used for partitioning at
any time, the splitting information must be stored for each node. Thus, adirectory is needed to store the
partitions. Specificdly, the directory must store the dimensons and data values used for splitting.
[HSW89].

The directory for Figure 3.10 is displayed in Figure 3.11. Each node stores the division as a
double &, Vi where D stands for the Dimension used, and V stands for the Vdue. A nodée'sleft child
represents the data space for those values smdler than its divison, while the right child represents the
larger ones.

For example, in Figure 3.10, the first divison occurred using the value 10 dong the horizontal
dimenson, say 1. This means that the double <1, 10> is stored in the root of the directory tree. All
data points with a horizontal value less than of 10 will stored to the left of the root, and al pointswith a
horizontal value greater than 10 will be stored to the right.

The next partition divides the left Sde aong the vertica or second dimension using avaue of 20.
Another divides the right Sde dong the same dimension using a value of 15. So, the doubles <2, 20>
and <2, 15> arethe left and right child of the root.
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The next division divides the points with a vaue in the firsg dimenson greater than 10 and a
vaue in the second dimension lessthan 15. This divison occurs dong the second dimension at the value
5. Thus, theleft child of <2, 15> will be the divison <2, 5>.

Findly, the top hdf of thislast partition is divided into two groups based on whether their vaue
inthefirg dimensonislessor greater than 15. So, the right child of <2, 5> will be the double <1, 15>.
Thisdirectory isillustrated in Figure 3.11.

<1,10>

<2,20> <2,15>

/

<2,5>

<1,15>

Figure3.11 - LSD-Tree Directory for Figure 3.10

4. Indexing Techniques Using MBRs:

As sated earlier, the data structures in Section 3 ae designed to store data elements that are
points. For these trees to store data eements that are geometric shapes, they must first be converted to
points using some transformation technique. For example, by using the upper and lower boundsin each
dimension, ak-dimensond rectangle can be identified by a point in a 2k-dimensiona space [Jag90].

By contragt, the data structures in this section can store geometrica shapes without such a
transformation. These trees group data elements together just as the structuresin Section 3, except that
they store their Minimum Bounding Region (MBR). As dtated in Section 1, thisis the smdlest region,
usudly rectangular, that covers dl of the geometric shapesinitsgroup. Figure 4.1 illustrates an example
of arectangular MBR.
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Figure4.1- MBR for a Set of Shapes

Each node of the index trees described below corresponds to the MBR of its group of shapes.
Like the trees in Section 3, when an insertion is gpplied to a full node, the elements are split into two
groups. Each of these groupsis stored in a new node containing its respective MBR.

The trees in this section differ based on the properties of the MBRs.  These properties include
the shape of the MBRs, the dgorithms used for splitting, and the amount the bounding regions are
permitted to overlap.

R-Tree, Rt-Tree, R*-Tree:

The R-tree, or Rectangle Tree, of [Gut84] is one of the more popular data structures for
indexing spatid data.  In this tree, each node contains tuples of the form &, ptrii, where ptr is the
address of a child of the node, and | indicates its rectangular MBR by identifying the upper and lower
bounds for each dimenson. Similar to the vaues in a B-treg, the number of tuples in each node of an
R-tree cannot be greater than some M and lessthan somem £ M/2. Also, like the B-tree, the R-treeis
balanced. [Gut84].

As the B-tree has popular variants caled the B and B*-tree, the Rtree has the R™ and R* -
tree. The Rt-tree, presented in [SRF87], differs from the R-tree in that the MBRs are not permitted to
overlgp. Thisisaccomplished by dlowing spatid data dements to be split among different nodes in the
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tree. When MBRs are permitted to overlap, the search agorithm must traverse multiple paths of the
tree. If they do not overlap, however, a shape can be located using only one path of the tree. The
drawback to this method of avoiding overlap isthat the agorithm for deleting a node is more complex in
an R -treethan in an R-tree. [SRF87].

The R*-tree of [BKSSO0] is more like the R-tree in that it dlows overlgoping minimum
bounding rectangles. The R*-tree differs from the Rtree in that it determines each MBR based on its
area, margin of space, and overlgp with other MBRs, where the Rtree determines an MBR based
amply on its area.  In addition, the R*-tree uses a concept called Forced Reinsert, which tries to
prevent splits by deleting, then reinserting elements of afull node. [BKSSO(Q).

Figure 4.2 illustrates a set of MBRs for an R-tree. The data regions are labeled with letters, and
the MBRs are labeled with numbers. The rectangle surrounding the entire figure is labded 1. This
rectangle covers three smdler MBRs, 2, 3, and 4. Findly, these smaller rectangles are each an MBR
for aset of dataregions.

The corresponding Rtree is described in Figure 4.3. Asindicated earlier, in the node labeled
1, there would exigt valuesindicating the upper and lower bounds of the MBR aong each dimension. In
addition, there would be pointers to each of its children, namely the nodes labeled 2, 3, and 4. They
each would store the values of the boundaries of their respective MBRs as well as pointers to their data

regions.

.0
)

4

Q. § .

Figure 4.2 - Minimum Bounding Rectanglesfor the R-Tree
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A B C D E F G H |

Figure4.3 - R-Tree Corresponding to Figure 4.2

Buddy Tree:

Like the R™-tree, the buddy tree, presented in [SK90], prevents its MBRs from overlapping.
Unlike the R*-tree, however, its spatiad data does not have to be split among multiple paths.  So,
searching can be peformed using only one path in the tree. This tree is ale to accomplish this by
rediricting the minimum bounding regions to regions called buddy rectangles.

Buddy rectangles are formed as a result of repesatedly dividing the data spacein hdf. Splitting a
full node, and subsequently merging an underfilled node can only be done with these rectangles The
use of these partitions prevents splits from propagating downward asthey do in R*-trees. [SK90].

P-Tree:

The Polyhedra or P-trees of [Jag90] use a different gpproach for their MBRs. Instead of using
a rectangular bounding region, the Rtree uses a more generd shagpe. Specifically, the sdes of the
bounding region do not have to be perpendicular to the direction of any of the dimensions of the data
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gpace. In many cases, this will reduce the volume of the MBRs [Jag90]. Since the volume is reduced,
the overlap is reduced, and the probability of searching multiple branches of the tree is decreased.

The entries in a P-tree node differ from ones in an Rtree in that their MBRs must be specified
differently. The R-tree bounding regions can be identified by the upper and lower vaues of each
dimension of the data space, Snce they are only oriented in those directions. In contrast, the polyhedra
regions may be composed of hyperplanes running in severd different orientations. These directions
define an orientation space that may have more dimensions than the data space. The entriesin aP-tree,
then, must define the upper and lower bounding vaues for each direction of the orientation space to
describe the MBR. [Jag9Q].

Figure 4.4 illudtrates a st of MBRs for a P-tree. Asin Figure 4.2, the dataregions are labeled
with letters, and the MBRs are labeled with numbers. The corresponding P-tree is the same as the one
displayed in Figure 4.3.

Figure 4.4 - Polyhedral Minimum Bounding Rectanglesfor the P-Tree

X-Tree:
The X-tree presented in [BKK96] is dso focused on minimizing the overlap occurring between
MBRs in order to reduce the amount of paths in the tree that must be searched. The tree does not,

however, split a data region among multiple MBRs as in the RF-tree. Instead, this tree analyzes the
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amount of overlgp that will occur for each olit, then choosing the minimum overlap or cregting a
supernode to avoid it dtogether. This involves a more complex agorithm used for splitting the origind
R-tree.

The term X-tree is short for eXtended node tree. As indicated earlier, this data structure is so
named because when the splitting algorithm cannot a split without overlap, it crestes a new type of node
cdled asupernode. This term refers to an interna node of the X-tree whose capacity is larger than the
norma nodes. This means that they will contain more data vaues and pointers than the maximum limit
of the other nodes. This aso helps reduce the number of levelsin the tree, which improves the search
timeto locate al of the nodes. [BKK96].

Figure 4.5 [BKK96] illudtrates this concept. The darkened circles in the nodes represent
pointers to its children. The shaded node, containing more pointers than the other nodes, is a

supernode. Its creation dlows the tree to have only two levels of interna nodes.

Figure4.5- An X-Treewith a Supernode [BK K 96]

SR-Tree, SS-Tree:

The SR-tree was presented in [KS97]. It stands for the Sphere-Rectangle Tree, and is a
modification of another data structure presented in [WJ96] called the SS or Sphere-Sphere Tree. In
the SS-tree, the nodes correspond to the minimum bounding sphere of the data objects. The main

advantage of using spheres instead of rectangles is that the former can be represented by only its center
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and radius. This requires less space than rectangles that require storing the upper and lower bounding
values of the data structure for each dimension. [KS97, WJ96].

A drawback of the SS-treeis that the minimum bounding spheres have more volume than the
minimum bounding rectangles. This increases the amount of overlgp. This problem is addressed by the
Sphere-Rectangle Tree, where each node corresponds to the region of data space identified by the
intersection of the minimum bounding sphere and the minimum bounding rectangle of its data eements.
While this reduces the amount of overlap, the use of the intersection of the two geometrica shapes
means that a more complex representation is needed for each node. Specificaly, this region isidentified
by the center of its minimum bounding sphere and the minimum of the longest distance to the minimum
bounding spheres and rectangles of its children. These values are the center and radius of each node,
respectively. This complex representation also means that more computations are needed to recompute
these regions, which increases the time taken to perform insertions and deletions. [KS97].

Figures 4.6 and 4.7 illudtrate a set of MBRs for an SS-tree and SR-tree, respectively, with the
MBRs for the SR-tree shaded in Figure 4.7. Once again, the data regions are labeled with letters, and
the MBRs are labeled with numbers. The corresponding trees are the same as the one displayed in
Figure 4.3.

Figure 4.6 - Spherical Minimum Bounding Rectanglesfor the SS-Tree
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Figure 4.7 - Intersection (Shaded) of Spheresand Rectanglesfor the SR-Tree

TV-Tree:

One of the problems with many of the trees in this section is tha they are inefficient when
dedling with data that has a large number of dimensons. Because of this, the Telescopic Vector Tree
(TV-tree) was developed and presented in [LJF94]. Its purpose is to reduce the number of dimensions
used by the index.

This reduction is accomplished by using only the dimensions that are necessary for distinguishing
the datapoints. Such dimensons are called active. Thisis opposed to inactive dimensions that describe
the dimengons at the beginning of the feature vectors that have al of the same vaues [LIF94].
Determining which dimensons are needed to digtinguish the data points implies that some features are
more important than others [KS97]. So, dthough this results in reducing the number of dimensons, it
does not treat each dimension of the data space equally.

As the data contained in the tree's MBRs changes, the dimensions that are active will change.
The number of active dimensons, however, remains congtant. So, a TV-a treeis one that contains a

active dimensons. For example, let an MBR of a TV-2 tree contain the points &3, 0.5, 5, 3f, &3, 0.5,
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7, i and &3, 0.5, 10, & Since the vaues in the firgt two dimensions of the points are the same,
dimensons 1 and 2 are inactive. The active dimensions, then, are dimensions 3 and 4. This means that
in addition to the points specifying the bounding region, each node mus identify the number of

dimengonsit sores, with the last a consdered active,

5. TreeIndex Classfications

The indexing trees surveyed in this paper use different techniques to partition the data points of a
multidimensiond space. Asareault of these differences, some trees may be better suited than others for
specific applications. If the expected types of queries and digtribution of the data are known, then the
properties of these techniques should be considered when determining the index that is the most
appropriate.

Different classfications of the indexing trees may be developed based on the properties of their
partitioning techniques. In this section, we categorize the trees surveyed in this paper using such
classfications. We will dso describe the advantages and disadvantages of each classfication which
should help developers in determining the trees that are the most appropriate for their gpplications. We
begin by liding the various trees in the far left column of Table 1. In the next column, we provide the
reference of the paper that introduced the tree. The remaining columns list the properties used to
classfy the trees.

As indicated by the sections in this paper, one method of classifying indexing techniques is
based on whether or not they use Minimum Bounding Regions (MBRS). This classfication is important
because it indicates the computations that must be performed and the splitting information that must be
dtored for each data partition. If an indexing tree uses MBRs, then a minimum cover must be computed
for the data elements stored at each of its internd nodes. In addition, an MBR must be stored &t each
internal node which means storing the upper and lower bounds aong each dimengon if it is rectangular.

Alternatively, an advantage is that MBRs cover only the data dements and not the entire
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multidimensona space. This reduces the amount of time spent searching by quickly diminating large
amounts of the data space.

In addition to this advantage, indexes that use MBRs are designed to index multidimensond
data shapes, while the ones that do not are designed for only points. While it is true that the indexes
without MBRs could maintain multidimensiona shapes by trandforming them into a set of data points
indicating each of its upper and lower vaues dong every dimension, this transformation is undesirable.
The reason is that it increases the number of dimensions used to represent each shape. So, whether or
not atree uses MBRsis our first classfication, and is listed in Table 1 under the column marked "MBR".

In [SRF87], researchers identify three different poperties of an indexing method. The first
property, caled position, is based on whether the division of the data space is predetermined or varies
based on the digtribution of the data elements. Techniques using the first procedure are caled fixed,
and techniques using the second are caled adaptable. Fixed-postion trees have the advantage that
snce the plit is predetermined, the vaues and dimensions used do not have to be stored explicitly.
Another advantage is that irrespective of the order that data € ements were added into or deleted from
the tree, the resulting partitions will be amilar. Thus, it is not required to know the didribution of the
data beforehand to optimize the performance of the tree [SK90]. An advantage of adaptable-position
trees, however, is tha the number of data eements may be evenly split independently of their pogtions
in the data space. As Stated earlier, this reduces the amount of time used to search the tree for a data
element.

The second property, dimensionality, is based on the number of dimensons split by each
divison. Either one dimension isused for dividing dataregions, or dl of the dimensonsare used. Using
multidimensiond divisons improves the ability to creete partitions that contain an even number of data
points from any data digtribution. Again, this reduces the searching time of the tree. The disadvantage
of multidimensond partitions is that for every dimension, the vaues used for splitting must be stored at
each node. Thisincreasesthe amount of storage space used by the index.

The fina property, locality, describes the number of regions that are split on each divison.

Grid methods divide dl regions dong the same dimension with the same plits, while brickwal methods
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divide each region individudly. Dividing each region individualy requires a tree-based index to store
each partition. Consequently, al of the tree-based indexes surveyed are brickwall methods.

These properties are included in Table 1, except for locdity because of the redundancy.
Pogdtion is indicated as either fixed or adgptable usng the definitions described earlier.  The
dimensondity of the partitioning is identified in the column marked "Dim." as multi for multidimensond
divisons and sngle for sngle-dimensiona ones.

Three additional properties are defined in [SK90]. The fird is based on whether the regions
overlap. Idedly, the data partitions should not overlgp. This ensures that a query point will not be
contained in more than one node at each level of the index tree. Thus, only one path of the tree must be
accessed, which reduces the time used for searching.  Still, it is difficult to split some sats of
multidimensiond shapes without using overlgpping partitions. Thus, a disadvantage of the trees that do
not use overlgpping regions is tha they require a more complex splitting agorithm when indexing
shapes.

The second property is based on whether the partitions are rectangular. Rectangular partitions
are smple to implement and are stored easly using upper and lower bounds along each dimension.
Regions based on other shapes, however, may provide smdler covers for the data which eiminates
more empty data space from the tree. In addition, since only a center and radius are needed, sphericd
data shapes use less storage space at each node in the tree.

The find property, completeness, is based on whether or not the entire data space is
partitioned. The last property refers to those indexing methods that do not store empty data regions
such as the area labeled 01 in Figure 3.3. Treestha avoid partitioning such regions may iminate large
amounts of the data space. This reduces the size of the tree. Neverthdess, there is a tradeoff in that
trees that completely partition the data space use smpler splitting agorithms.

As with the earlier set, these properties are included in Table 1. The trees that dlow
overlapping data partitions are indicated under the column heading "Over.". Smilarly, the trees use
rectangular data partitions are indicated in the column marked "Rect.”, and trees that completely

partition the entire data space are indicated in the column marked "Comp.”.
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We classify tree-based indexes according to other properties as wel. To retrieve a
multidimensond data point from the tree-based indexing techniques, its region must first be located.
Thisisaso true for inserting and deleting data dements. Locating a region corresponds to searching the
tree. If adata point is contained in only one region, then only one path of the tree must be searched.
Otherwise, severd subtrees must be searched. The ability to search one pathisthe next classficaion
included in Table 1. This classfication is related closdy to the “overlap” property in that only one path
must be searched in indexes whose data space partitions are digoint. However, there are indexes, such
as the BV-tree, where the partitions do overlap, yet only one path is traversed from the root to a leaf
during a search.

Whether or not a split can propagate to its children is our next classfication. As discussed in
section 3, a split of afull node that propagates downward may unevenly divide the data ements of its
children. This means that some nodes, and therefore pages, may have an extremey low utilization, so it
would be impossible to determine a minimum utilization for the entire tree [Fred5]. So, in the columniin
Table 1 marked “Split Propagate’, we indicate whether or not a split of a full node can propagate into
its children. Splits, however, are operations that occur after insertions. Some of the tree-based indexes
are not consdered to be dynamic by their developers, so the entire tree should be reconstructed after
an insertion or deletion. Therefore, splits should not occur in these trees. We marked those such trees
in this survey with the word “gatic” in this column.

The next property iswhether or not the tree is balanced, meaning thet al of the leaves are a the
same level [KS91]. This property is listed under the column heading "Bd." in Table 1. A tree that is
not balanced may have extremely long paths to a data ement. This increases the amount of time
needed to search and access it. Keeping a tree balanced, however, requires usng split and merge
operations to perform insertions and deletions. This increases the time it takes to perform those
operations.

Findly, we categorize the data based on whether or not the tree requires an ordering on the
attributes of the feature vector to perform the partitioning, listed under the column heading "Order".
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Generdly, if an ordering is needed on the dimengons, then they are not treated equaly. The dimension

listed firgt will have priority in determining the data partitions.

The indexing methods listed in Sections 3 and 4 are categorized dl of these classfications in

Table1. They are sorted in aphabetica order using the names of the trees.

Search Split

Tree Ref. MBR [ Position [ Dim. | Overlap | Rect. | Comp. |One Path|Propagate| Bal. | Order
Buddy SK90 Yes Fixed Multi No Yes No Yes No No No
BV Fre95 No Adaptable | Multi Yes No Yes Yes No No No
G Kum94 No Fixed Single No Yes No Yes No Yes Yes
HB LS90 No Adaptable [ Multi No No Yes Yes No Yes No
K-D-B Rob81 No [ Adaptable | Single No Yes Yes Yes Yes Yes Yes
LSD HSW89 No Adaptable | Single No Yes Yes Yes No No No
MB+ YVD95 No Adaptable [ Single No Yes Yes Yes No Yes Yes
MVP BO97 No Adaptable [ Multi No No Yes Yes Static Yes No
P Jag90 Yes | Adaptable | Multi Yes No No No No Yes No
R Gut84 Yes | Adaptable | Multi Yes Yes No No No Yes No
R* BKSS90 Yes | Adaptable | Multi Yes Yes No No No Yes No
R+ SRF87 Yes | Adaptable | Multi No Yes No Yes Yes Yes No
SR KS97 Yes | Adaptable | Multi Yes No No No No Yes No
SS WJ96 Yes | Adaptable | Multi Yes No No No No Yes No
TV LIJF94 Yes | Adaptable | Multi Yes No No No No Yes Yes
VP Yia93 No Adaptable [ Multi No No Yes Yes Static Yes No
X BKK96 Yes | Adaptable | Multi Yes Yes No No No Yes No

Table 1 - Tree-Based I ndexing Classifications

6. Summary and Future Work

This paper provided a survey of the tree-based techniques used to index multidimensiona data.

These techniques treat the data as points on a multidimensiona grid partitioned into severa regions.

Points that are contained in the same region are stored together in the tree, where each node pointsto a

region that is further subdivided by its children.

In addition, this paper presented properties for categorizing the indexing methods. Not only do

these categories provide a way to classfy different indexing Structures, but they can be used D

determine the most appropriate tree to use given the requirements of an application and its expected

data distribution.
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For future work in classfying indexing trees, it would be useful to perform amore detailed study
on their performances using the same sets of data. Each of the references compares the performance of
its tree againg some of the other trees in this survey, but none uses dl of them. These comparisons
should be performed using dl of the types of queries listed in this paper as well a insartions and
deletions. They should dso be tested using both even and uneven data didribution patterns.  In
addition, it should analyze the overdl node utilization and amount of space required by each index.
These evaluations should lead to determining the generd types of gpplications best suited for each index.
The reaults of the evaluations can be combined with Table 1 in Section 5 to select the best index for an
actud or hypothetica application.

Another area for future work is the development of new indexes by modifying thetreesligted in
this paper based on the classfications presented in Section 5. 1t may be desirable, for example, for
some gpplication to have an index that does not completely partition the data, uses only one path for
searching, prevents a split of a full node from propagating downward into its children, is balanced, and
does not require an ordering on the dimensions of the feature vectors of the data ements. Since none
of the trees has dl of these properties together, it would be useful to perform research on the ability to
modify one of the trees such as the R+ or BV-tree. Thus, theinformation in Table 1 illustrates severd
open areas of research for modifying or creating new indexing trees.

It is worth noting that the trees presented in this paper are useful for indexing multimedia objects
represented as multidimensiona points or regions. Not al multimedia database management systems
represent their data using such feature vectors, however. For example, in a view-based system some of
the data elements are represented as a set of operations modifying other stored objects [GS96]. For
this and other types of multimedia databases, dternate indexing strategies may have to be considered.
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