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Abstract 
 As in conventional DataBase Management Systems (DBMSs), to allow users to efficiently 
access and retrieve data objects, a MultiMedia DataBase Management System (MMDBMS) must 
employ an effective access method such as indexing and hashing.  This paper provides a survey of tree-
based multidimensional indexing techniques for MMDBMSs that maintain image data represented as 
feature vectors.  These techniques support such data while maintaining desirable characteristics of a B-
tree, an index structure most commonly used in traditional DBMSs. 
 In this survey, we provide descriptions of each tree as well as give examples of the different 
data organization schemes.  We also describe the advantages and disadvantages of using each 
technique.  In addition, we provide classifications of the trees using several different properties.  These 
classifications should assist researchers in identifying the strengths and weaknesses of any new indexing 
technique they develop as well as help users determine the most appropriate data structure for their 
applications. 

 

 

1. Introduction 

 An index is designed to facilitate searching for data records.  In an index for a traditional 

DataBase Management System (DBMS), the values of a search key are sorted together.  Generally, 

addresses are attached to the values that point to the locations of their associated data records.  Using 

the search key values, then, a data record can be located quickly.  In addition, this type of data 

structure supports locating records with their search keys in between a range of values.  This is in 

contrast to other data access methods like hashing [KS91]. 

 In a MultiMedia DataBase Management System (MMDBMS), users should be able to retrieve 

the data as efficiently as they can in a traditional DBMS.  So, the images stored in an MMDBMS 
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should be indexed.  Unlike traditional data, however, images are complex.  Attempts to reflect this 

complexity usually result in images being represented as a set of values or attributes.  For example, an 

image may be represented by the color of its primary object, the chain code representing the shape of 

that object, and a Boolean value indicating whether or not the image is a landscape.  Such a set of 

attributes is referred to as a feature vector.  When represented in this manner, each image becomes a 

point in a k-dimensional space, where k is the number of features in each vector [Fal96].  Figure 1.1 

illustrates this using a three-dimensional feature vector.  The vector contains the values 3.5 in the X-

dimension, 0 in the Y-dimension, and 8 in the Z-dimension. 
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Figure 1.1 - Point in Three-Dimensional Space 

 

 Such a feature vector can be created for any image by applying some feature extraction 

algorithms to it.  When the same group of general algorithms are applied to the set of images in an 

MMDBMS, the images would then be represented as feature vectors with the same dimensions.  This 

means that they can be treated as different points on the same k-dimensional space. 

 When developing indexing methods for image data, then, researchers often operate under the 

assumption that the images are represented as feature vectors in the same multidimensional space.  To 

access data of this type, any of the dimensions should be used.  So, for an indexing technique for an 

MMDBMS to perform efficiently, it must be designed to search all dimensions of the data. 

 The indexing technique used in an MMDBMS should be able to efficiently satisfy several 

different types of queries.  In [Fal96], the types of queries are classified into three categories.  The first 

type is range queries that ask the system to return all data elements that are contained inside or 
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intersect with a specified region of the multidimensional space.  This classification also refers to those 

queries that request images containing a particular set of attributes, called subpattern matching 

[LJF94].  Note that the specified region could be as small as a single point.  In this case, the query is an 

exact match or point query.   

 As an example, consider the three-dimensional space displayed in Figure 1.1.  A range query 

for this domain could be to return the points with values in the X-dimension, between 0 and 2, values in 

the Y-dimension between 1 and 2, and values in the Z-dimension between 0 and 5.  Figure 1.2 

illustrates the region of space specified by this query as shaded.  Any data elements that are contained in 

this region would be returned in response to this example query. 
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Figure 1.2 - Three-Dimensional Range Query 

 

 The second type of query listed in [Fal96] is called a nearest neighbor query.  This query 

describes those queries in which the users request the n data elements that are the most similar to a 

specified region of the multidimensional space.  This, of course, requires the MMDBMS to have a 

definition of "most similar". 

 An example of this query is illustrated in Figure 1.3.  Using the Euclidean Distance as a measure 

for similarity, a user wants the top two images most similar to the point 〈3, 0.5, 4〉.  This triple is the 

query point and is represented by the black point in the figure.  The other points represent the feature 

vectors of the images in the database.  The points that are shaded gray indicate the vectors that satisfy 

the query. 
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Figure 1.3 - Two Nearest Neighbors Query 

 

 The third type of query according to [Fal96] is a spatial join.  These are queries that return 

pairs of data elements that are similar.  An example of this is to find the redundant images in a database.  

For these queries, as with the nearest neighbor queries, a definition of similarity is needed.  Satisfying 

these queries in an MMDBMS involves some function that takes two images as input and returns a 

scalar value as output.  This value, called the distance, is then used as a measurement of the similarity 

between the two images.  The goal of this type of query, then, is to find pairs of images whose distance 

is less than some specified value. 

 Figure 1.4 illustrates an example of a spatial join.  In it, similar points are defined as those whose 

Euclidean Distance is smaller than 2.  The only two points that have this property are shaded gray in the 

illustration.  So, in response to this spatial join query, the MMDBMS would return 〈-1, -2, -1〉 and 

〈0.5, -2, 0〉. 
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Figure 1.4 - Spatial Join 

 

 Appropriate multidimensional indexes are needed to efficiently solve each of above queries.  

First, for range queries, the index should provide an ordering of the data.  Starting from the minimum 

value of any dimension, the index should facilitate successively moving to the next highest value until the 

maximum is reached.  For nearest neighbor queries, the index should maintain information about the 

distances between data elements.  Ideally, the MMDBMS should be able to move to the next closest 

neighbor of a data point using the index.  Finally, the index should help satisfy spatial joins by grouping 

together points that are near one another.  Thus, appropriate multidimensional indexes provide an 

ordering of the data, and group similar elements together. 

 This ability to order data is an advantage of indexing when compared to other data access 

methods such as hashing.  This is because it is difficult to design an effective hashing function that 

preserves order [KS91].  One of the advantages of hashing, however, is that it allows the MMDBMS 

to directly compute the address of a data point, while indexes force the system to search for it using 

some data structure.  This means that indexes are generally slower. 

 To reduce the time an index takes to locate data items, we need to minimize the number of data 

accesses it uses during the search.  This can be accomplished using a tree-based index that stores the 

data elements in its leaves.  Beginning at the root, we can traverse a single path down to one of its 

leaves to locate a particular data point.  Thus, the number of steps a tree uses for searching is 
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proportional to its height.  Because of this, much of the research into multidimensional access methods 

has been focused on developing tree-based indexes. 

 In addition to storing the k-dimensional points described earlier, many of the proposed trees are 

designed to store geometric shapes.  These trees store the shapes using their Minimum Bounding Region 

(MBR).  This refers to the smallest region, usually rectangular, that encloses the entire shape.  Since 

these trees are storing regions, they have to resolve different issues than structures that do not use 

MBRs, such as maintaining overlapping data.  This difference means that the multidimensional tree-

based indexes that use MBRs should be categorized separately from the ones that do not. 

 This paper provides a survey of both types of the existing multidimensional tree-based indexes.  

The remainder of it is organized in the following manner:  In Section 2, we will list the basic 

characteristics of tree-based multidimensional indexing techniques.  In Section 3, we will describe 

indexing trees that do not use MBRs, and in Section 4, we will describe those that do.  In Section 5, we 

classify the indexing structures based on the properties they use to organize data.  Finally, in Section 6, 

we will summarize and indicate directions for future research. 

 

2. Requirements for Tree-Based Techniques 

 A B-tree is one of the most popular methods in databases for indexing traditional data.  The 

data structure allows efficient insertions and deletions while remaining balanced [Com79].  These 

properties should be present in a tree-based indexing structure for multidimensional data as well. 

 Unfortunately, as it is defined, the B-tree is inappropriate for multidimensional data.  The data 

structure uses a single key to index the data records.  To use the B-tree with multidimensional data, the 

data must be converted to a single dimension.  One method of accomplishing this is to concatenate all of 

the attributes together into one long single-dimension string for each data object.  The main drawback to 

this approach is that the dimension that is ordered first in the long string will have the priority in 

determining the distance between two data objects.  Another drawback is that it is difficult to satisfy 

range queries using this technique [Kum94]. 
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 Researchers would like an indexing structure that is as effective for image data as a B-tree is for 

traditional data.  Consequently, most of the research in this area has been directed to modifying the B-

tree so it can effectively index multidimensional data.  This means that most of the proposed trees in this 

paper will be variants of the B-tree.  So, to describe these trees, it will be necessary to first describe a 

B-tree. 

 The B-tree indexes relations using their primary keys.  In this tree, each node contains a list of 

key values and pointers.  The tree limits the number of key values each node may contain.  The number 

of values must be less than some maximum, M, and greater than some minimum, m, where M = 2m.  

The pointers refer to subtrees that only contain data elements grouped in the ranges created by the key 

values.  For example, say a node had a set of k values x1, x2, ... , xk.  One pointer would point to the set 

values less than x1.  The next would point to the set of values between x1 and x2. The next refers to the 

set of values between x2 and x3.  This pattern continues, and the next to last pointer in the node refers to 

the values between xk-1 and xk.  Finally, the last pointer refers to the values larger than xk.  [Com79]. 

 An illustration of this tree is given in Figure 2.1.  In this example, the value of M equals 2, so 

each node contains either 1 or 2 values.  The root contains values 16 and 30.  Its left child points to 

values that are less than 16, and its right child points to values greater than 30.  Finally, its middle child 

points to values between 16 and 30. 
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Figure 2.1 - A B-Tree 

 

 Since the multidimensional index trees are based on the same data structure, they share similar 

characteristics.  Each node of the index trees corresponds to a specific section of a multidimensional 

data space, and each of its subtrees corresponds to specific subsections.  In addition, each node stores 
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a set of values and pointers, like their counterparts in a B-tree.  The set of values identifies the region of 

space corresponding to the node.  For example, if the node represented a rectangular region of data 

space, the values would represent the upper and lower bounds along each dimension.  The set of 

pointers refers to the children of the node.  If the node is a leaf, these pointers refer to the actual data 

elements. 

 Also like the B-tree, each node has a limit on the number of regions it can contain, bounded 

above by some M, and below by some m ≤ M/2.  These limits are important when considering inserting 

and deleting data points.  If a node is full, meaning that it already contains M data space partitions, 

inserting a region into it requires that a different region be removed and stored elsewhere.  Generally, 

this requires a reorganization of an entire section of the tree.  In Figure 2.1, an example of a full node is 

the one that contains the values 21 and 28. 

 One method of reorganization involves deleting some of elements of the full node, and 

reinserting them.  A more common method, however, is to create a new sibling of the full node and 

store some of the data regions inside it.  This operation used in the method is called a split, and is 

illustrated in Figure 2.2.  To insert the value 25, the node containing 21 and 28 must be split.  So, a new 

sibling to that node is created by adding a right child to the root. The value 28 is stored in the sibling.  

This allows the new value, 25, to be stored in the root. 
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Figure 2.2 - The Split Operation 

 

 When a sibling is created for a node, a new pointer must be added to its parent.  The parent 

could be a full node, which means that it would also have to be split.  This means that the splitting 
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operation can propagate upwards.  For some of the trees in this survey, however, the splitting operation 

can also propagate downwards, meaning that the children of the full node may be split as well. 

 Similarly, a delete operation on a node containing m data regions will result in a node containing 

too few elements.  In these cases, the contents of the node will have to be combined with the contents 

from other nodes.  This operation is called a merge which, like the splitting operation, can dramatically 

reorganize the structure of a tree. 

 In the following sections, we will describe the multidimensional tree-based indexes with these 

characteristics.  We will list their unique approaches to partitioning the data space as well as describe 

their advantages and disadvantages. 

 

 

3. Indexing Techniques Without MBRs: 

 The indexes described in this section are designed to store multidimensional points.  In them, 

each node corresponds to a specific region of the data space, say R.  The children of the nodes 

correspond to subregions of R.  The nodes at the leaves contain pointers to the data elements that are 

contained in their respective regions. 

 The index trees in this section differ from one another based on their algorithms for splitting and 

creating the subregions for an internal node.  Each method of partitioning a region has its own 

advantages and disadvantages.  These properties are described in the following paragraphs: 

 

K-D-B Tree: 

 The K-D-B tree was presented in [Rob81].  As described in Section 2, each of the internal 

nodes stores values to identify a section of the multidimensional data space, and a set of pointers 

referencing its children.  The section identified by a node does not overlap with any of the regions of its 

siblings, and are created from splitting the larger regions corresponding to its parent.  This split is 

performed along a single dimension.  The dimension used for splitting alternates according to a round-
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robin algorithm for all of the dimensions in the feature vector.  This means that an ordering must exist for 

the dimensions. 

 The splits in the K-D-B tree are made in order to divide the data points in the resulting partitions 

as evenly as possible, and to minimize the number of splits.  So, each region is split independently of the 

other partitions in the data space.  This means that other partitions do not have to be considered when 

splitting a data region.  [Rob81]. 

 Figure 3.1 illustrates the data space partitioning for the K-D-B tree using the alternating 

dimensions.  The data points are labeled with letters, and the regions are labeled with numbers.  The 

lines in the data space indicate the divisions.  For example, the first division partitioned the data into the 

two regions containing 1234 and 5678.  The figure also illustrates that the next division in the left region 

occurred along the other dimension, and partitioned the data into regions 12 and 34.  These are the 

regions that would be stored in a B-tree, as displayed  in Figure 3.2. 
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Figure 3.1 - Data Space Partition for the K-D-B Tree 
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Figure 3.2 - K-D-B Tree Corresponding to Figure 3.1 

 

 

G-Tree: 

 In the G-tree of [Kum94], the properties of a B-tree are combined with the properties of a grid 

file.  The grid file is a data access method that divides the address space along each dimension.  The file 

is so named because the divisions occur in a grid-like fashion.  Each feature vector in this data structure, 

then, is mapped to the closest multidimensional grid point in the address space [NHS84]. 

 The G-tree is a balanced index structure that, like the K-D-B tree, divides the data space into a 

set of nonoverlapping, rectangular regions.  When a split occurs to a full node, its corresponding region 

is split in half with respect to the area of the region.  This is in contrast to the K-D-B tree that splits in 

order to obtain an even number of data points in each region. 

 The split is performed along a single dimension, and the dimension used alternates using the 

round-robin scheme.  Again, this implies that the dimensions must be ordered.  Since the dimension 

alternates in an ordered fashion, a unique string can be used to identify each partition.  Because each 

split creates two new partitions, the identifier can be a binary string. 

 So, the dimension used for splitting alternates on each level of the tree.  In addition, since a 

region is formed by dividing another in half, the value used for splitting also does not have to be stored.  

This means that the position of each node in the G-tree directly identifies its corresponding region.  So, 
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although its splitting procedure is more restrictive than the K-D-B tree, the G-tree has the advantage of 

requiring less storage.  [Kum94]. 

 Figure 3.3 illustrates the data space partitioning for the G-tree.  As in Figures 3.1 and 3.2, the 

data points are labeled with letters, and the nonempty regions would be stored in a B-tree.  These 

regions, however, are labeled by the binary strings corresponding to its location.  For example, the data 

regions on the left of the first division are labeled beginning with 0, while the ones on the right begin with 

1.  Similarly, in the left half of Figure 3.3, the data regions at the top are identified starting with 01, while 

those at the bottom are identified starting with 00. 
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Figure 3.3 - Data Space Partition for the G-Tree 

 

 

MB+-Tree: 

 The MB+-tree, presented in [YVD95], is so named because it is a modification to another 

common variation of the B-tree called the B+-tree.  In the B+-tree, each of the data values is stored in 

the leaves, copied in the internal nodes in the tree whenever necessary.  The leaves are linked together 

so that they may be searched quickly [Com79]. 

 Like the G-tree, the MB+-tree partitions the data space into several disjoint, rectangular 

regions.  Also like the G-tree, the regions are ordered, and the tree is balanced. 

 The MB+-tree partitions the data space by dividing it with several slices along the first 

dimension.  As each partition becomes full, it must be split.  The splits occur along the first dimension 
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until the resulting strips become too thin, meaning that the width is smaller than some predetermined 

value.  When this occurs, the data region is divided independently of the other regions along the second 

dimension.  The region will continue to be split in this manner until the strips become too thin with 

respect to the second dimension.  At this point, the next dimension is split.  This pattern continues as 

new elements are added to the tree.  [YVD95]. 

 So, one of the advantages of the MB+-tree is that unlike the G-tree, the slices along a 

dimension may occur anywhere.  So, if there are a large number of data points in a region clustered 

together, the MB+-tree may still split the number of data elements evenly.  This decreases the number of 

levels in the tree, and thus reduces the time spent for searching data elements.  The disadvantage is that 

the value used for splitting must now be stored at each level. 

 Figure 3.4 illustrates a two-dimensional data space partitioning for the MB+-tree.  Again, the 

data points are labeled with letters.  The data regions, however, would be stored in a B+-tree.  These 

regions are labeled using the order of the dimensions.  For example, the data regions on the left are 

labeled beginning with 0, the labels in the middle begin with 1, and the labels on the right start with 2.  

The second number indicates the position of the region along the next dimension. 

 These labels can be used to order all of the data regions.  With this single ordering, the data 

regions are arranged in a B+-tree.  This allows the search algorithm to directly move from one region to 

the next by using the linked list of leaves.  [YVD95]. 
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Figure 3.4 - Data Space Partition for the MB+-Tree 
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BV-Tree: 

 The BV-tree was presented in [Fre95].  It was designed to overcome one of the disadvantages 

of the K-D-B tree that can occur when an insertion of an element into a data space partition causes its 

corresponding node to split.  Specifically, the split may propagate downward, meaning that the full 

node’s children may have to be split along the same division used to split the node itself.  This is a 

disadvantage because the division that separates the node’s data elements evenly may not divide its 

children evenly.  So, it is possible that many nodes in the tree may become sparse [Fre95, LS90]. 

 To avoid this problem, the BV-tree uses the concept of promoting data space partitions during 

splits.  A partition is promoted by moving it from its current node in the BV-tree to its parent.  This is 

done whenever one of the data space partitions developed from a split is completely contained inside 

another partition below it.  The lower one must be promoted to the level of the higher partition and is 

referred to as its guard.  So, instead of the splitting operation propagating to the lower partition, it is 

simply promoted.  [Fre95]. 

 An example of a promotion is displayed in Figure 3.5.  Assume Data Space Partition 1 is a 

subset of Partition 5, the shaded region.  Partition 5, then, must be promoted along with its children so 

that it is on the same level as Partition 1.  After this promotion, Partition 5 is the guard of Partition 1. 
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Figure 3.5 - Promotion of a Data Space Partition in the BV-tree. 

 

 One of the drawbacks that arises from promoting guards is that the searching algorithm defined 

for the BV-tree in [Fre95] is more complex.  Although promoted, the guards must be searched as if 

they are still at their original position in the tree.  This requires storing them as the search proceeds down 
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the tree to the leaves.  At each level in the tree, the appropriate guard must be compared with the 

current node to determine the next child to be accessed in the searching algorithm.  [Fre95]. 

 

 

hB-Tree: 

 Like the BV-tree, the hB-tree or holey-brick B-tree of [LS90] was designed to overcome the 

disadvantages arising from splitting full nodes in K-D-B trees.  To prevent the splits from propagating 

downward into the children, the hB-tree uses the concept of “holey-bricks”.  This refers to the regions 

that form when the data space is partitioned. 

 To divide the data space, the divisions of the region may occur along more than one dimension.  

This permits creating rectangular holes in the region by partitioning along pieces of several dimensions.  

This gives more flexibility in how the data is partitioned.  This flexibility provides a solution for the 

situations where cutting through a node’s region using one entire dimension would mean splitting the 

subregions of the children. 

 Not only does this prevent splits from propagating downwards, but it also distributes data 

elements evenly in situations where a single-dimensional cut cannot.  To illustrate, consider the example 

presented in [LS90].  It is based on a hypothetical set of data points arranged in a plus sign in two-

dimensional space.  One single-dimensional division of the data will not result in an even number of 

points in the new partitions.  One of them will contain at least 10 of the 13 data points.  Figure 3.6 

illustrates this uneven split of the data points by dividing the data points into sets S1 and S2. 

 To divide the data more evenly, a two-dimensional split of the rectangular region must be used.  

Such a division allows the hB-tree to create two partitions where one contains six points, and the other 

contains seven.  Figure 3.7 [LS90] illustrates such a two-dimensional split of the data points into sets 

S1' and S2'. 
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Figure 3.6 - Single-Dimensional Split of Data Points [LS90] 

 

 

S1' S2'

 

Figure 3.7 - Two-Dimensional Split of Data Points [LS90] 

 

 A disadvantage of this indexing scheme is that a more complex representation is required for 

storing the nodes.  This is because a node now potentially corresponds to a rectangular region of the 

data space with several holes removed.  Both the rectangular region and its holes must be represented in 

the node.  In addition, as defined in [LS90], many of the nodes of the hB-tree may have more than one 

parent which means that this data structure is actually not a tree.  Despite this, a data element can be 

located by traversing only one path from the root to a leaf.  [LS90]. 

 

 

VP, MVP-Trees: 

 Although many trees partition the data based on their positions along a dimension, the Vantage 

Point Tree, or VP-tree, introduced in [Yia93] uses a different technique.  At each node in the tree, it 
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selects one of the data points to function as a vantage point, and the division of the remaining data points 

is based on their distances from it.  This is accomplished by sorting the data points based on their 

distances from the vantage point, then dividing them into n groups for a n-ary VP-tree.  The division is 

performed so that the number of data points in each partition is as even as possible.  Because it is based 

on the distance from a point, the partitions of a VP-tree are spherical instead of rectangular.  [Yia93, 

Chi94]. 

 One of the advantages of the VP-tree is that it is naturally suited to solve nearest neighbor 

queries since the divisions of the data points are based solely on their relative distances from one 

another [Yia93, Chi94].  A disadvantage, however, is that when the data space has a large number of 

dimensions, the partitions become very thin.  This results in an increase in the number of branches of the 

tree that may be searched [BO97]. 

 Because of the disadvantage, a modification to the VP-tree was proposed in [BO97].  It is 

called the Multi-Vantage Point Tree (MVP-tree).  Instead of using one vantage point at each node, the 

MVP-tree uses two.  The first vantage point is used to create m partitions, where m is the order of the 

tree.  In each of these partitions, the second vantage point creates m more divisions for a total of m2 

partitions.  The advantage this gives us is that we can create more divisions per internal node of the 

index tree.  This increases the fanout, which reduces the search time.  [BO97]. 

 Figures 3.8 and 3.9 illustrate the VP-tree and MVP-tree spherical data space partitioning, 

respectively.  Again, the data points are labeled with letters.  In Figure 3.8, the data points are 

partitioned into three groups based on vantage point V.  The first group consists of the data elements 

that are the closest to V, which are A, B, C, and D.  The second group contains the next closest data 

elements, specifically E, F, G, and H.  The last group contains the remaining data elements I, J, and K. 
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Figure 3.8 - Data Space Partition for the VP-Tree 

 

 In Figure 3.9, four data space partitions are created from two vantage points, V1 and V2.  The 

first vantage point divides the data into two groups, one consisting of A, B, C, and D, and the other 

consisting of E, F, G, and H.  Vantage point V2 divides each of these partitions into two more groups.  

Based on their distances, A and B would belong in one partition, and C and D in another.  Similarly, 

points E and F would be in a division separate from points G and H. 
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Figure 3.9 - Data Space Partition for the MVP-Tree 

 

 

LSD-Tree: 

 The LSD-tree, or Local Split Decision Tree, was presented in [HSW89].  This tree is so named 

because the criteria used for splitting is performed independently for each rectangular partition.  The split 

is not restricted to any specific dimension or whether or not it must divide the data space in half.  This 
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means that we may split using any direction and any value we choose.  A possible partitioning is 

illustrated in Figure 3.10. 
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Figure 3.10 - Data Space Partition for the LSD-Tree 

 

 This flexibility has a drawback, however.  Since any dimension can be used for partitioning at 

any time, the splitting information must be stored for each node.  Thus, a directory is needed to store the 

partitions.  Specifically, the directory must store the dimensions and data values used for splitting.  

[HSW89]. 

 The directory for Figure 3.10 is displayed in Figure 3.11.  Each node stores the division as a 

double 〈D, V〉, where D stands for the Dimension used, and V stands for the Value.  A node's left child 

represents the data space for those values smaller than its division, while the right child represents the 

larger ones. 

 For example, in Figure 3.10, the first division occurred using the value 10 along the horizontal 

dimension, say 1.  This means that the double <1, 10> is stored in the root of the directory tree.  All 

data points with a horizontal value less than of 10 will stored to the left of the root, and all points with a 

horizontal value greater than 10 will be stored to the right. 

 The next partition divides the left side along the vertical or second dimension using a value of 20.  

Another divides the right side along the same dimension using a value of 15.  So, the doubles <2, 20> 

and <2, 15> are the left and right child of the root. 
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 The next division divides the points with a value in the first dimension greater than 10 and a 

value in the second dimension less than 15.  This division occurs along the second dimension at the value 

5.  Thus, the left child of <2, 15> will be the division <2, 5>. 

 Finally, the top half of this last partition is divided into two groups based on whether their value 

in the first dimension is less or greater than 15.  So, the right child of <2, 5> will be the double <1, 15>.  

This directory is illustrated in Figure 3.11. 

 
<1,10>

<2,15><2,20>

<1,15>

<2,5>

 

Figure 3.11 - LSD-Tree Directory for Figure 3.10 

 

 

4. Indexing Techniques Using MBRs: 

 As stated earlier, the data structures in Section 3 are designed to store data elements that are 

points.  For these trees to store data elements that are geometric shapes, they must first be converted to 

points using some transformation technique.  For example, by using the upper and lower bounds in each 

dimension, a k-dimensional rectangle can be identified by a point in a 2k-dimensional space [Jag90]. 

 By contrast, the data structures in this section can store geometrical shapes without such a 

transformation.  These trees group data elements together just as the structures in Section 3, except that 

they store their Minimum Bounding Region (MBR).  As stated in Section 1, this is the smallest region, 

usually rectangular, that covers all of the geometric shapes in its group.  Figure 4.1 illustrates an example 

of a rectangular MBR. 
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Figure 4.1 - MBR for a Set of Shapes 

 

 Each node of the index trees described below corresponds to the MBR of its group of shapes.  

Like the trees in Section 3, when an insertion is applied to a full node, the elements are split into two 

groups.  Each of these groups is stored in a new node containing its respective MBR. 

 The trees in this section differ based on the properties of the MBRs.  These properties include 

the shape of the MBRs, the algorithms used for splitting, and the amount the bounding regions are 

permitted to overlap. 

 

R-Tree, R+-Tree, R*-Tree: 

 The R-tree, or Rectangle Tree, of [Gut84] is one of the more popular data structures for 

indexing spatial data.  In this tree, each node contains tuples of the form 〈I, ptr〉, where ptr is the 

address of a child of the node, and I indicates its rectangular MBR by identifying the upper and lower 

bounds for each dimension.  Similar to the values in a B-tree, the number of tuples in each node of an 

R-tree cannot be greater than some M and less than some m ≤ M/2.  Also, like the B-tree, the R-tree is 

balanced.  [Gut84]. 

 As the B-tree has popular variants called the B+ and B*-tree, the R-tree has the R+ and R*-

tree.  The R+-tree, presented in [SRF87], differs from the R-tree in that the MBRs are not permitted to 

overlap.  This is accomplished by allowing spatial data elements to be split among different nodes in the 
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tree.  When MBRs are permitted to overlap, the search algorithm must traverse multiple paths of the 

tree.  If they do not overlap, however, a shape can be located using only one path of the tree.  The 

drawback to this method of avoiding overlap is that the algorithm for deleting a node is more complex in 

an R+-tree than in an R-tree.  [SRF87]. 

 The R*-tree of [BKSS90] is more like the R-tree in that it allows overlapping minimum 

bounding rectangles.  The R*-tree differs from the R-tree in that it determines each MBR based on its 

area, margin of space, and overlap with other MBRs, where the R-tree determines an MBR based 

simply on its area.  In addition, the R*-tree uses a concept called Forced Reinsert, which tries to 

prevent splits by deleting, then reinserting elements of a full node.  [BKSS90]. 

 Figure 4.2 illustrates a set of MBRs for an R-tree.  The data regions are labeled with letters, and 

the MBRs are labeled with numbers.  The rectangle surrounding the entire figure is labeled 1.  This 

rectangle covers three smaller MBRs, 2, 3, and 4.  Finally, these smaller rectangles are each an MBR 

for a set of data regions. 

 The corresponding R-tree is described in Figure 4.3.  As indicated earlier, in the node labeled 

1, there would exist values indicating the upper and lower bounds of the MBR along each dimension.  In 

addition, there would be pointers to each of its children, namely the nodes labeled 2, 3, and 4.  They 

each would store the values of the boundaries of their respective MBRs as well as pointers to their data 

regions. 
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Figure 4.2 - Minimum Bounding Rectangles for the R-Tree 
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Figure 4.3 - R-Tree Corresponding to Figure 4.2 

 

 

Buddy Tree: 

 Like the R+-tree, the buddy tree, presented in [SK90], prevents its MBRs from overlapping.  

Unlike the R+-tree, however, its spatial data does not have to be split among multiple paths.  So, 

searching can be performed using only one path in the tree.  This tree is able to accomplish this by 

restricting the minimum bounding regions to regions called buddy rectangles. 

 Buddy rectangles are formed as a result of repeatedly dividing the data space in half.  Splitting a 

full node, and subsequently merging an underfilled node can only be done with these rectangles.  The 

use of these partitions prevents splits from propagating downward as they do in R+-trees.  [SK90]. 

 

 

P-Tree: 

 The Polyhedral or P-trees of [Jag90] use a different approach for their MBRs.  Instead of using 

a rectangular bounding region, the P-tree uses a more general shape.  Specifically, the sides of the 

bounding region do not have to be perpendicular to the direction of any of the dimensions of the data 
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space.  In many cases, this will reduce the volume of the MBRs [Jag90].  Since the volume is reduced, 

the overlap is reduced, and the probability of searching multiple branches of the tree is decreased. 

 The entries in a P-tree node differ from ones in an R-tree in that their MBRs must be specified 

differently.  The R-tree bounding regions can be identified by the upper and lower values of each 

dimension of the data space, since they are only oriented in those directions.  In contrast, the polyhedral 

regions may be composed of hyperplanes running in several different orientations.  These directions 

define an orientation space that may have more dimensions than the data space.  The entries in a P-tree, 

then, must define the upper and lower bounding values for each direction of the orientation space to 

describe the MBR.  [Jag90]. 

 Figure 4.4 illustrates a set of MBRs for a P-tree.  As in Figure 4.2, the data regions are labeled 

with letters, and the MBRs are labeled with numbers.  The corresponding P-tree is the same as the one 

displayed in Figure 4.3. 
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Figure 4.4 - Polyhedral Minimum Bounding Rectangles for the P-Tree 

 

 

X-Tree: 

 The X-tree presented in [BKK96] is also focused on minimizing the overlap occurring between 

MBRs in order to reduce the amount of paths in the tree that must be searched.  The tree does not, 

however, split a data region among multiple MBRs as in the R+-tree.  Instead, this tree analyzes the 
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amount of overlap that will occur for each split, then choosing the minimum overlap or creating a 

supernode to avoid it altogether.  This involves a more complex algorithm used for splitting the original 

R-tree. 

 The term X-tree is short for eXtended node tree.  As indicated earlier, this data structure is so 

named because when the splitting algorithm cannot a split without overlap, it creates a new type of node 

called a supernode.  This term refers to an internal node of the X-tree whose capacity is larger than the 

normal nodes.  This means that they will contain more data values and pointers than the maximum limit 

of the other nodes.  This also helps reduce the number of levels in the tree, which improves the search 

time to locate all of the nodes.  [BKK96]. 

 Figure 4.5 [BKK96] illustrates this concept.  The darkened circles in the nodes represent 

pointers to its children.  The shaded node, containing more pointers than the other nodes, is a 

supernode.  Its creation allows the tree to have only two levels of internal nodes. 

 

 

Figure 4.5 - An X-Tree with a Supernode [BKK96] 

 

 

SR-Tree, SS-Tree: 

 The SR-tree was presented in [KS97].  It stands for the Sphere-Rectangle Tree, and is a 

modification of another data structure presented in [WJ96] called the SS or Sphere-Sphere Tree.  In 

the SS-tree, the nodes correspond to the minimum bounding sphere of the data objects.  The main 

advantage of using spheres instead of rectangles is that the former can be represented by only its center 
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and radius.  This requires less space than rectangles that require storing the upper and lower bounding 

values of the data structure for each dimension.  [KS97, WJ96]. 

 A drawback of the SS-tree is that the minimum bounding spheres have more volume than the 

minimum bounding rectangles.  This increases the amount of overlap.  This problem is addressed by the 

Sphere-Rectangle Tree, where each node corresponds to the region of data space identified by the 

intersection of the minimum bounding sphere and the minimum bounding rectangle of its data elements.  

While this reduces the amount of overlap, the use of the intersection of the two geometrical shapes 

means that a more complex representation is needed for each node.  Specifically, this region is identified 

by the center of its minimum bounding sphere and the minimum of the longest distance to the minimum 

bounding spheres and rectangles of its children.  These values are the center and radius of each node, 

respectively.  This complex representation also means that more computations are needed to recompute 

these regions, which increases the time taken to perform insertions and deletions.  [KS97]. 

 Figures 4.6 and 4.7 illustrate a set of MBRs for an SS-tree and SR-tree, respectively, with the 

MBRs for the SR-tree shaded in Figure 4.7.  Once again, the data regions are labeled with letters, and 

the MBRs are labeled with numbers.  The corresponding trees are the same as the one displayed in 

Figure 4.3. 
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Figure 4.6 - Spherical Minimum Bounding Rectangles for the SS-Tree 
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Figure 4.7 - Intersection (Shaded) of Spheres and Rectangles for the SR-Tree 

 

 

TV-Tree: 

 One of the problems with many of the trees in this section is that they are inefficient when 

dealing with data that has a large number of dimensions.  Because of this, the Telescopic Vector Tree 

(TV-tree) was developed and presented in [LJF94].  Its purpose is to reduce the number of dimensions 

used by the index. 

 This reduction is accomplished by using only the dimensions that are necessary for distinguishing 

the data points.  Such dimensions are called active.  This is opposed to inactive dimensions that describe 

the dimensions at the beginning of the feature vectors that have all of the same values [LJF94].  

Determining which dimensions are needed to distinguish the data points implies that some features are 

more important than others [KS97].  So, although this results in reducing the number of dimensions, it 

does not treat each dimension of the data space equally. 

 As the data contained in the tree's MBRs changes, the dimensions that are active will change.  

The number of active dimensions, however, remains constant.  So, a TV-α tree is one that contains α 

active dimensions.  For example, let an MBR of a TV-2 tree contain the points 〈3, 0.5, 5, 3〉, 〈3, 0.5, 



Revised 

Page 28 of 36 

7, 0〉, and 〈3, 0.5, 10, 8〉.  Since the values in the first two dimensions of the points are the same, 

dimensions 1 and 2 are inactive.  The active dimensions, then, are dimensions 3 and 4.  This means that 

in addition to the points specifying the bounding region, each node must identify the number of 

dimensions it stores, with the last α considered active. 

 

 

5. Tree Index Classifications  

 The indexing trees surveyed in this paper use different techniques to partition the data points of a 

multidimensional space.  As a result of these differences, some trees may be better suited than others for 

specific applications.  If the expected types of queries and distribution of the data are known, then the 

properties of these techniques should be considered when determining the index that is the most 

appropriate. 

 Different classifications of the indexing trees may be developed based on the properties of their 

partitioning techniques.  In this section, we categorize the trees surveyed in this paper using such 

classifications.  We will also describe the advantages and disadvantages of each classification which 

should help developers in determining the trees that are the most appropriate for their applications.  We 

begin by listing the various trees in the far left column of Table 1.  In the next column, we provide the 

reference of the paper that introduced the tree.  The remaining columns list the properties used to 

classify the trees. 

 As indicated by the sections in this paper, one method of classifying indexing techniques is 

based on whether or not they use Minimum Bounding Regions (MBRs).  This classification is important 

because it indicates the computations that must be performed and the splitting information that must be 

stored for each data partition.  If an indexing tree uses MBRs, then a minimum cover must be computed 

for the data elements stored at each of its internal nodes.  In addition, an MBR must be stored at each 

internal node which means storing the upper and lower bounds along each dimension if it is rectangular.  

Alternatively, an advantage is that MBRs cover only the data elements and not the entire 
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multidimensional space.  This reduces the amount of time spent searching by quickly eliminating large 

amounts of the data space. 

 In addition to this advantage, indexes that use MBRs are designed to index multidimensional 

data shapes, while the ones that do not are designed for only points.  While it is true that the indexes 

without MBRs could maintain multidimensional shapes by transforming them into a set of data points 

indicating each of its upper and lower values along every dimension, this transformation is undesirable.  

The reason is that it increases the number of dimensions used to represent each shape.  So, whether or 

not a tree uses MBRs is our first classification, and is listed in Table 1 under the column marked "MBR". 

 In [SRF87], researchers identify three different properties of an indexing method.  The first 

property, called position, is based on whether the division of the data space is predetermined or varies 

based on the distribution of the data elements.  Techniques using the first procedure are called fixed, 

and techniques using the second are called adaptable.  Fixed-position trees have the advantage that 

since the split is predetermined, the values and dimensions used do not have to be stored explicitly.  

Another advantage is that irrespective of the order that data elements were added into or deleted from 

the tree, the resulting partitions will be similar.  Thus, it is not required to know the distribution of the 

data beforehand to optimize the performance of the tree [SK90].  An advantage of adaptable-position 

trees, however, is that the number of data elements may be evenly split independently of their positions 

in the data space.  As stated earlier, this reduces the amount of time used to search the tree for a data 

element. 

 The second property, dimensionality, is based on the number of dimensions split by each 

division.  Either one dimension is used for dividing data regions, or all of the dimensions are used.  Using 

multidimensional divisions improves the ability to create partitions that contain an even number of data 

points from any data distribution.  Again, this reduces the searching time of the tree.  The disadvantage 

of multidimensional partitions is that for every dimension, the values used for splitting must be stored at 

each node.  This increases the amount of storage space used by the index. 

 The final property, locality, describes the number of regions that are split on each division.  

Grid methods divide all regions along the same dimension with the same splits, while brickwall methods 
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divide each region individually.  Dividing each region individually requires a tree-based index to store 

each partition.  Consequently, all of the tree-based indexes surveyed are brickwall methods. 

 These properties are included in Table 1, except for locality because of the redundancy.  

Position is indicated as either fixed or adaptable using the definitions described earlier.  The 

dimensionality of the partitioning is identified in the column marked "Dim." as multi for multidimensional 

divisions and single for single-dimensional ones. 

 Three additional properties are defined in [SK90].  The first is based on whether the regions 

overlap.  Ideally, the data partitions should not overlap.  This ensures that a query point will not be 

contained in more than one node at each level of the index tree.  Thus, only one path of the tree must be 

accessed, which reduces the time used for searching.  Still, it is difficult to split some sets of 

multidimensional shapes without using overlapping partitions.  Thus, a disadvantage of the trees that do 

not use overlapping regions is that they require a more complex splitting algorithm when indexing 

shapes. 

 The second property is based on whether the partitions are rectangular.  Rectangular partitions 

are simple to implement and are stored easily using upper and lower bounds along each dimension.  

Regions based on other shapes, however, may provide smaller covers for the data which eliminates 

more empty data space from the tree.  In addition, since only a center and radius are needed, spherical 

data shapes use less storage space at each node in the tree. 

 The final property, completeness, is based on whether or not the entire data space is 

partitioned.  The last property refers to those indexing methods that do not store empty data regions 

such as the area labeled 01 in Figure 3.3.  Trees that avoid partitioning such regions may eliminate large 

amounts of the data space.  This reduces the size of the tree.  Nevertheless, there is a tradeoff in that 

trees that completely partition the data space use simpler splitting algorithms. 

 As with the earlier set, these properties are included in Table 1.  The trees that allow 

overlapping data partitions are indicated under the column heading "Over.".  Similarly, the trees use 

rectangular data partitions are indicated in the column marked "Rect.", and trees that completely 

partition the entire data space are indicated in the column marked "Comp.".  
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 We classify tree-based indexes according to other properties as well.  To retrieve a 

multidimensional data point from the tree-based indexing techniques, its region must first be located.  

This is also true for inserting and deleting data elements.  Locating a region corresponds to searching the 

tree.  If a data point is contained in only one region, then only one path of the tree must be searched.  

Otherwise, several subtrees must be searched.  The ability to search one path is the next classification 

included in Table 1.  This classification is related closely to the “overlap” property in that only one path 

must be searched in indexes whose data space partitions are disjoint.  However, there are indexes, such 

as the BV-tree, where the partitions do overlap, yet only one path is traversed from the root to a leaf 

during a search. 

 Whether or not a split can propagate to its children is our next classification.  As discussed in 

section 3, a split of a full node that propagates downward may unevenly divide the data elements of its 

children.  This means that some nodes, and therefore pages, may have an extremely low utilization, so it 

would be impossible to determine a minimum utilization for the entire tree [Fre95].  So, in the column in 

Table 1 marked “Split Propagate”, we indicate whether or not a split of a full node can propagate into 

its children.  Splits, however, are operations that occur after insertions.  Some of the tree-based indexes 

are not considered to be dynamic by their developers, so the entire tree should be reconstructed after 

an insertion or deletion.  Therefore, splits should not occur in these trees.  We marked those such trees 

in this survey with the word “static” in this column. 

 The next property is whether or not the tree is balanced, meaning that all of the leaves are at the 

same level [KS91].  This property is listed under the column heading "Bal." in Table 1.  A tree that is 

not balanced may have extremely long paths to a data element.  This increases the amount of time 

needed to search and access it.  Keeping a tree balanced, however, requires using split and merge 

operations to perform insertions and deletions.  This increases the time it takes to perform those 

operations. 

 Finally, we categorize the data based on whether or not the tree requires an ordering on the 

attributes of the feature vector to perform the partitioning, listed under the column heading "Order".  
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Generally, if an ordering is needed on the dimensions, then they are not treated equally.  The dimension 

listed first will have priority in determining the data partitions. 

 The indexing methods listed in Sections 3 and 4 are categorized all of these classifications in 

Table 1.  They are sorted in alphabetical order using the names of the trees. 

 

Tree Ref. MBR Position Dim. Overlap Rect. Comp.
Search 

One Path
Split 

Propagate Bal. Order
Buddy SK90 Yes Fixed Multi No Yes No Yes No No No

BV Fre95 No Adaptable Multi Yes No Yes Yes No No No
G Kum94 No Fixed Single No Yes No Yes No Yes Yes
HB LS90 No Adaptable Multi No No Yes Yes No Yes No

K-D-B Rob81 No Adaptable Single No Yes Yes Yes Yes Yes Yes
LSD HSW89 No Adaptable Single No Yes Yes Yes No No No
MB+ YVD95 No Adaptable Single No Yes Yes Yes No Yes Yes
MVP BO97 No Adaptable Multi No No Yes Yes Static Yes No

P Jag90 Yes Adaptable Multi Yes No No No No Yes No
R Gut84 Yes Adaptable Multi Yes Yes No No No Yes No
R* BKSS90 Yes Adaptable Multi Yes Yes No No No Yes No
R+ SRF87 Yes Adaptable Multi No Yes No Yes Yes Yes No
SR KS97 Yes Adaptable Multi Yes No No No No Yes No
SS WJ96 Yes Adaptable Multi Yes No No No No Yes No
TV LJF94 Yes Adaptable Multi Yes No No No No Yes Yes
VP Yia93 No Adaptable Multi No No Yes Yes Static Yes No
X BKK96 Yes Adaptable Multi Yes Yes No No No Yes No  

Table 1 - Tree-Based Indexing Classifications  

 

 

6. Summary and Future Work 

 This paper provided a survey of the tree-based techniques used to index multidimensional data.  

These techniques treat the data as points on a multidimensional grid partitioned into several regions.  

Points that are contained in the same region are stored together in the tree, where each node points to a 

region that is further subdivided by its children. 

 In addition, this paper presented properties for categorizing the indexing methods.  Not only do 

these categories provide a way to classify different indexing structures, but they can be used to 

determine the most appropriate tree to use given the requirements of an application and its expected 

data distribution. 
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 For future work in classifying indexing trees, it would be useful to perform a more detailed study 

on their performances using the same sets of data.  Each of the references compares the performance of 

its tree against some of the other trees in this survey, but none uses all of them.  These comparisons 

should be performed using all of the types of queries listed in this paper as well as insertions and 

deletions.  They should also be tested using both even and uneven data distribution patterns.  In 

addition, it should analyze the overall node utilization and amount of space required by each index.  

These evaluations should lead to determining the general types of applications best suited for each index.  

The results of the evaluations can be combined with Table 1 in Section 5 to select the best index for an 

actual or hypothetical application. 

 Another area for future work is the development of new indexes by modifying the trees listed in 

this paper based on the classifications presented in Section 5.  It may be desirable, for example, for 

some application to have an index that does not completely partition the data, uses only one path for 

searching, prevents a split of a full node from propagating downward into its children, is balanced, and 

does not require an ordering on the dimensions of the feature vectors of the data elements.  Since none 

of the trees has all of these properties together, it would be useful to perform research on the ability to 

modify one of the trees such as the R+ or BV-tree.  Thus, the information in Table 1 illustrates several 

open areas of research for modifying or creating new indexing trees. 

 It is worth noting that the trees presented in this paper are useful for indexing multimedia objects 

represented as multidimensional points or regions.  Not all multimedia database management systems 

represent their data using such feature vectors, however.  For example, in a view-based system some of 

the data elements are represented as a set of operations modifying other stored objects [GS96].  For 

this and other types of multimedia databases, alternate indexing strategies may have to be considered. 
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