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ABSTRACT 
 Instead of saving multiple versions of a large multimedia 
data file, it is more efficient to store only the instructions used 
by the editors to create the different versions.  To uncompress 
files stored in this manner, the editor would simple perform the 
listed instructions.  For these files to be portable, however, the 
set of operations used in the instructions must be 
standardized.  To standardize a set of operations, there must be 
some criteria developed for the inclusion of each operation.  
This paper describes two desired properties of a set of image 
processing operations, namely minimality and independence.  
In addition, this paper demonstrates methods for testing for 
each of them. 
 
 
1. MOTIVATION 
 Multimedia data can be categorized into various types 
such as audio, video, still images, text, and graphics.  The one 
common attribute of all of these data types is that they all 
require large amounts of space (Khoshafian and Baker, 1996).  
For example, CD quality audio uses 1.4 Mb per second, NTSC 
quality video uses 1.92 Mb per frame, and an image stored as a 
bitmap can require 4,000,000 bytes (Aberer and Klas, 1992,  
Woelk, et. al, 1990). 

 One of the functions of a Multimedia Database 
Management System (MMDBMS) is to allow users to 
arbitrarily edit multimedia data (Grosky, 1994).  The enormous 
size of the multimedia data described above causes problems 
for the database systems that must maintain it. 
 To illustrate these problems, we will consider three 
example applications.  The first application is one for an interior 
designer.  This application would allow the designer to 
decorate a room by editing a photo of it.  Among the changes 
the designer could make are changing the color of the walls 
and carpet; adding, removing, or rearranging the furniture; and, 
finally, changing the lighting in the room.  The designer will 
also want to save several different versions of the room and be 
able to retrieve them to show to the customer. 
 The second example application is one for a recording 
studio.  This application would allow producers to enhance a 
recording by adding different sound effects to it.  In addition, 
the producers could add other voices or sample from other 
songs to the recordings.  The producers, of course, will want 
to save several different versions of the recordings to 
determine the ones that are the best to sell. 
 The final example is an application for the development of 
large scale software.  During the coding and testing phases of 
the development, several modifications will be made to the 
source code.  While debugging, the programmers will need to 
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save several different versions of the code, and then retrieve 
the later. 
 Each of these three examples stores a different type of 
multimedia data, namely, still images, audio, and text.  Each 
application, however, has similar requirements.  They must 
allow a user to start with a base object, create new objects by 
editing it, and save the new versions of the object. 
 Since multimedia data is space intensive, when users 
create and save several versions of these objects, they will 
quickly run out of storage.  Thus, for these and other similar 
applications, it is necessary to use some abstractions of the 
data that will allow appropriate references to the multimedia 
objects, but use less space (Aberer and Klas, 1992,  Klas and 
Aberer, 1995). 
 To solve this problem of editing multimedia data, 
researchers have proposed taking advantage of the similarity 
between the original and modified data files.  In Gruenwald and 
Speegle (1996), it has been proposed to develop an MMDBMS 
that stores only the original data files with a series of 
instructions explaining how to generate the new data. 
 Figure 1 illustrates an example of this process for an 
image database.  A user performs an action on an image such 
as clicking on the red option.  The editor receives this action 
and translates it into a standard operation, such as ‘change 
color red’.  The editor sends the command to the MMDBMS 
which performs the corresponding operation (x, y, color) → (x, 
y, red) on the image.  The MMDBMS, then returns the 
modified image to the editor, which will then display the new 
image to the user. 
 
 

Display Image

User Editor MMDBMS
Action Standard

Set of
Operations

“Click on Red” “Change Color Red” (x,y,color)→(x,y,red)  
Figure 1 - View-Based MMDBMS Process for Images 

 
 
 This method has many advantages over traditional image 
data compression techniques.  First, storing a sequence of 
instructions can potentially save much more space than any 
bitwise coding technique.  Second, the given data compression 
technique is lossless since the derived objects can be 
recreated using the stored sequence of operations.  Finally, 
since this technique does not specify how the base object 
should be stored, it can be used together with existing 

compression techniques.  For example, a base image in an 
MMDBMS can be stored using the JPEG compression 
standard, and the derived images can be stored using only a 
sequence of image editing operations. 
 For this method of data storage to be useful, it must be 
portable.  This means that any sequence of instructions 
generated by a multimedia editor must be interpreted by any 
other editor.  For different editors to interpret the instructions 
correctly, the set of operations used must be a part of some 
previously standardized set.  In Gruenwald and Speegle (1996), 
this set of operations is called a Logical Model Language 
(LML). 
 The goal of this paper is to provide a theoretical basis for 
establishing such a standardized set of image processing 
operations.  We will focus on two properties of a set of 
operations, namely independence and minimality.  We will 
provide formal definitions of each of these properties, and 
describe procedures for testing for them. 
 The remainder of this paper is organized in the following 
manner:  In section 2, we will discuss the desired properties of 
a set of image processing operations.  In section 3, we will 
define minimality, and demonstrate the testing procedure for it.  
We will do the same for independence in section 4.  Finally, in 
section 5, we will summarize our work. 
 
 
2. RELATED WORK 
 Several researchers are compiling sets and lists of image 
processing operations.  Some are compiling the list of 
operations for a particular application (Webb, 1992,  Joseph 
and Cardenas, 1988,  Bengtsson et. al., 1981), while others are 
creating the list for general use (Klette and Zamperoni, 1996).  
To be able to argue that their lists are complete, however, the 
researchers include as many image processing operations as 
possible. 
 In this paper, we use the definition of completeness 
presented by Brown et. al. (1997).  Specifically, a complete set 
of image processing operations has the ability to express any 
transformation from one image to another.  In addition, Brown 
et. al. (1997) demonstrates that although it may be inefficient, 
this ability can be performed with a small number of operations, 
specifically six. 
 To extend the work performed by Brown et. al. (1997), 
other useful properties of an LML must be determined.  As in 
Webb (1992), we view the set of image processing operations 
as a little language.  Little languages are defined as languages 
that are used for a specific problem, but do not have the 
features of traditional programming languages (Bentley, 1986). 
 Bentley (1986) lists several goals of the design of a little 
language.  In addition to the ability of describing all possible 
objects, the author states that the removal of any unnecessary 
operations should also be a goal.  To satisfy these two goals, 
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we will determine when an image processing operation in a set 
is necessary by defining when a particular operation is 
independent, and when the entire set is minimal. 
 
 
3. MINIMALITY 
 In Brown et. al. (1997), we provide a method for 
determining if a given set of image processing operations is 
complete.  However, to justify that each operation in a 
complete set is necessary, we must also show that the removal 
of any operation from the set means that it is no longer 
complete.  More formally, we must show that no subset of the 
set of operations is complete.  This means that the set is 
minimal. 
 If a set is complete, then the addition of any operator will 
result in a complete set.  This can be proven from the fact that 
since the original set of image processing operations is 
complete, it can express all image transformations.  Since 
adding operations does not reduce the number of 
transformations a set can perform, adding operations to a 
complete set will always create another complete set. 
 Conversely, if the addition of operators does not result in 
a complete set, the original set was not complete.  This implies 
that if a set is not complete, then no subset of it will be 
complete either.  Using this information, we have developed 
the following procedure to determine if a set is minimal: 
 
 Let S be a set {O1, O2, ..., ON}, where each Oi is an image 
procession operation. 
 Show S is complete (Otherwise S is not minimal) 
 For i = 1 to N 
  Let S’ = S - {Oi). 
  Show S’ is not complete (Otherwise S is not 
minimal). 
 
 We will apply this test for minimality on the LML 
described by Brown et. al. (1997).  This set consists of six 
image processing operations called merge, define, mutate, 
modify, combine, and applyfunction.  The merge operation 
combines two images together to form a new image.  The 
define operation creates a new image by selecting a subset of 
an image and creating new pixels outside the image.  The 
mutate operation changes the location of some of the pixels in 
the image.  The modify operation changes the color of the 
pixels in an image explicitly, while the combine operation 
changes the color by calculating new values from the 
neighbors.  Finally, the applyfunction operation manipulates 
the color mode used by the pixels. 
 These six image processing operations are our set, S.  
According to the procedure described above, the first step in 
determining if S is minimal is to prove that S is complete.  As an 

example used to illustrate the testing procedure, this set was 
proven complete by Brown et. al. (1997). 
 The next step is to repeatedly remove an operation from 
S, and test the remaining five operations for completeness.  So, 
defining O1 to be the merge operation, we will let S’ = S - 
{merge}, then test if S’ is complete. 
 According to the completeness test, we must show that 
S’ can perform eight simple operations, otherwise it is not 
complete.  The eight operations are adding a pixel, removing a 
pixel, adding a channel, removing a channel, changing the 
horizontal position of the pixel, changing the vertical position 
of the pixel, modifying a channel, and modifying the value of 
the channel. 
 These operations come from the definition of an image 
used by Brown et al. (1997).  This definition is formed from the 
traditional notion of an image f(x, y) = (v1, v2, ... , vn), where x is 
the horizontal position, y is the vertical position, and each v i is 
a value of a channel of the pixel (Gonzales and Woods, 1992). 
We convert this equation of an image to one describing an 
image as a set of pixels, where each pixel is a set of triples {<x, 
y,  vi>}.  When we explicitly represent each channel by a 
variable ci, we define each pixel to be a set of 4-tuples {<x, y, ci, 
vi>}. 
 Both adding and removing a pixel can be performed by 
the define operation in S’.  Since one of its functions is to 
create a new image by selecting a superset of an image, we can 
add one new pixel to an image.  Similarly, since one of the 
functions of the define operation is to create a new image by 
selecting a subset of an image, we can select all of the pixels 
except the desired one in an image.  Adding, removing, and 
modifying a channel can all be performed by the applyfunction 
operation, depending on the parameters used.  The mu tate 
operation can be used to change both the horizontal and 
vertical positions of a pixel.  Finally, the modify operation can 
be used to change the value of a channel of a pixel. 
 Since define, applyfunction, mutate, and modify are all in 
S’, then S’ is complete.  According to our procedure, since S’ is 
complete, S is not minimal. 
 As a different example, we will examine a new set 
containing only three operations.  These operations are define, 
modify, and applyfunction, and they are defined in the same 
way as above.  We will call the set {define, modify, 
applyfunction} T. 
 Our first step in showing that T is minimal is to show that 
T is complete.  As stated above, adding and removing a pixel 
can be performed by the define operation, and adding, 
removing, and modifying a channel can be performed by the 
applyfunction operation.  Changing the value of a channel in 
the pixel can be performed by modify. 
 To change the horizontal and vertical positions of a pixel 
in an image, we can use a combination of all three operations.  
We can use define to remove the pixel from its current position, 
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then add it to its new position.  To recreate the appropriate 
channels and values, we can use the modify and applyfunction 
operations. 
 Since we can perform all of the eight simple operations 
using the elements of T, the set T is complete.  Next, we will 
test T - {Oi} for completeness for values of i from 1 to 3. 
 Let T’ = T - {define}.  Since the remaining operations in 
T’, modify and applyfunction, only edit the channels and their 
values, it is not possible to add or remove a pixel from the 
image.  So, T’ is not complete. 
 Next, we will set T’ = T - {modify}.  Neither define nor 
applyfunction can change the value of a channel in a pixel.  
Thus, the set T’ cannot perform all of the eight simple 
transformations, which means that it is not complete. 
 Finally, we will set T’ = T - {applyfunction}.  Neither of 
the operations left in T’, define and modify, can add or remove 
a channel from a pixel.  So, like the previous cases, T’ is not 
complete. 
 Summarizing, the set T = {define, modify, applyfunction} 
is complete.  In addition, removing any operation from T 
creates a new set T’ that is not complete.  By our definition, 
then, the set T is minimal. 
 
 
4. INDEPENDENCE 
 In mathematics, an axiom in a set is independent if it 
cannot be derived from the other axioms in the set (Smart, 
1988).  We define an operation as independent using the same 
ideas.  Specifically, an operation in a set is independent if it 
performs a transformation that cannot be expressed by any 
combination of the other operations.  We define the entire set 
to be independent if all of the operations in the set are 
independent of each other. 
 This notion of independence is related to the concept of 
minimality.  Another way of stating that a set is minimal is 
stating that a set is complete, and each operation in the set is 
independent of the others.  Thus, the method for proving that 
a set of image processing operations is independent is similar 
to the method of proving that a set is minimal.  Formally, the 
steps for proving a set independent are: 
 
 Let S be a set {O1, O2, ..., OM}, where each Oi is an image 
procession operation. 
 For i = 1 to M 
  Let S’ = S - {Oi). 
  Show ∃ a transformation performed by {Oi} that 
cannot be performed by S’ 
     (Otherwise S is not independent) 
 
 We will demonstrate this procedure by testing the set of 
six image processing operations used earlier, namely merge, 
define, modify, combine, and applyfunction.  To perform this 

procedure, we must characterize all of the possible functions of 
each of the operations.  We will do this in terms of the eight 
simple operations described above. 
 The merge operation alters an image by combining it with 
a new one.  This means that it can modify the base image in 
several ways depending on the parameters used with the 
operation.  By merging an image with a new pixel, it can add a 
pixel to the base image, which means that it could add several 
pixels to an image.  By merging a pixel in the image with 
another pixel at the same location, it could replace the existing 
pixel or simply alter the channels or values of the channels of 
that pixel.  This means that it can add, remove, or modify 
channels of a pixel as well as modify its values. 
 Merge cannot, however, delete pixels from the base 
image.  By the definition of the merge operation given in 
Gruenwald and Speegle (1996), merge only adds new pixels or 
changes the color of existing pixels.  Although it could change 
the color of a pixel to match the background color, the pixel will 
still be defined in the image.  The definition of merge also 
implies that it has no way of changing the horizontal and 
vertical positions of a pixel. 
 As stated earlier, the define operation transforms an 
image by selecting a subset or superset of the image.  This 
implies that it can only add and delete pixels, and not change 
the color of a pixel, nor change the channels on which the pixel 
operates. 
 The mutate operation shifts, rotates, enlarges, or shrinks 
an image.  So, it can change the horizontal and vertical 
positions of an image.  When it shrinks an image, it removes 
pixels, and when it enlarges an image, it creates new pixels.  
This operation, then, could be used to add or remove pixels as 
well.  Mutate does not affect the channels of the pixels nor 
their values. 
 The modify operation allows users to change the values 
of the channels in the pixels.  It does not, however, affect the 
position of the pixels, and it does not add or remove pixels.  In 
addition, modify cannot alter the channels used by a pixel, only 
its values. 
 The combine operation is similar to the modify operation 
except that it will calculate the new value of a pixel using 
information from its neighbors.  Like modify, it does not affect 
the position of the pixels, the number of pixels in the image, or 
the channels used by the pixels. 
 Finally, the applyfunction operation edits the channels 
used by an image.  It can change, add, or remove channels 
from some or all of the pixels.  This operation, however, does 
not add or remove pixels, change the position of the pixels, nor 
change the values of the channels. 
 Now that we have identified the basic functions of each 
operation, we can determine whether each is independent.  So, 
we will let S, our set, equal {merge, define, mutate, modify, 
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combine, applyfunction}, and let S’ = S - {merge}, which 
equals to {define, mutate, modify, combine, applyfunction}. 
 As stated above, the merge operation can add pixels, edit 
the colors of the pixels, and edit their channels.  These 
operations can be performed with the remaining operations in 
S’.  The define operation can add pixels, the combine operation 
can change the color of the pixels, and the applyfunction 
operation can edit their channels.  So, each operation that can 
be performed by merge can be performed by the operations in 
S’, which means that merge is not independent. 
 Removing {define} from S yields the new set S’ = {merge, 
mutate, modify, combine, applyfunction}.  The define 
operation can add and remove pixels, and these operations can 
be performed by merge and mutate, respectively.  Since the 
operations that can be performed by define can be performed 
by the operations in S’, define is not independent. 
 When S’ = S - {mutate}, S’ becomes {merge, define, 
modify, combine, applyfunction}.  The mutate operation adds 
and removes pixels as well as changes the horizontal and 
vertical positions of the pixels.  To add and remove operations, 
we can use the define operation.  To change the position of 
pixels, however, we must use a combination of the other 
operators. 
 Changing the position of a pixel can be duplicated by 
removing the pixel, adding a new one in the appropriate 
position, then setting the channels and colors.  The define 
operation can perform the removal and addition of pixels from 
the necessary positions.  To set the appropriate channels and 
colors, we can use the applyfunction and modify operations.  
This means that the transformations performed by the mutate 
operation can be duplicated by the operations in S’.  So, 
mutate is not independent. 
 The only transformation that modify performs is to 
change the color of the pixels in an image.  This can also be 
performed by the combine operation.  When S’ = S - {modify}, 
S’ = {merge, define, mutate, combine, applyfunction}.  Since 
combine is in S’, S’ can perform all of the transformations that 
modify can perform, and that means modify is not independent.  
Similarly, when S’ = S - {combine}, S’ = {merge, define, mutate, 
modify, applyfunction}.  So, S’ can perform all of the 
transformations that combine can perform, which means that 
combine is also not independent. 
 Finally, let S’ = S - {applyfunction}.  This means that S’ = 
{merge, define, mutate, modify, combine}.  The applyfunction 
operation adds, removes, or modifies the channels that an 
image uses.  Since the merge operation can also add, remove, 
or modify a channel, S’ can perform all of the transformations 
that applyfunction can.  So, like the other operations in S, 
applyfunction is not independent. 
 If there were an image transformation that one of these 
operations, say Oi, performed that could not be duplicated by 
the other operations in S, then Oi would be independent.  As 

demonstrated, this is not true for any of the operations in the 
example LML.  Since there exists an operation in S that is not 
independent of the others, the entire set is not independent. 
 
 
5. CONCLUSION AND FUTURE WORK 
 In the preceding sections, we have presented methods 
for determining if a set of image processing operations is 
minimal, and if it is independent.  To accomplish this, we have 
explicitly defined minimality and independence, and what it 
means for a single operation to be independent of others in a 
set.  In addition, we have shown that the Logical Model 
Language (LML) presented by Gruenwald and Speegle (1996) 
is neither minimal nor independent.  Furthermore, none of the 
image processing operations in the LML are independent of 
the others.  This means that to justify their inclusion in a 
standardized LML, we must develop different criteria. 
 One possible method of justification is to count the 
number of operations it takes to duplicate the transformations 
of a particular operation.  This would give us a basis for 
measuring efficiency.  Even though it may be obvious that it is 
more efficient to have some specific operation, we would be 
able to state the number of transformations saved by including 
it.  Instead of determining when an operation is independent, 
we would determine what transformations cannot be 
duplicated in k operations, where k ≥ 0. 
 In addition, we must extend our work to the other types 
of multimedia data listed earlier.  Using similar criteria to the 
ones used earlier, we must develop LMLs for audio, video, and 
text.  In addition, a prototype application must be developed to 
determine the space savings generated by a view-based 
multimedia database management system. 
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