
1

DETERMINING A MINIMAL AND INDEPENDENT SET OF IMAGE
PROCESSING OPERATIONS FOR A MULTIMEDIA DATABASE SYSTEM

Leonard Brown
Le Gruenwald

The University of Oklahoma
School of Computer Science

Norman, OK, 73069
lbrown@cs.ou.edu, gruenwal@cs.ou.edu

ABSTRACT
 Instead of saving multiple versions of a large multimedia
data file, it is more efficient to store only the instructions used
by the editors to create the different versions. To uncompress
files stored in this manner, the editor would simple perform the
listed instructions. For these files to be portable, however, the
set of operations used in the instructions must be
standardized. To standardize a set of operations, there must be
some criteria developed for the inclusion of each operation.
This paper describes two desired properties of a set of image
processing operations, namely minimality and independence.
In addition, this paper demonstrates methods for testing for
each of them.

1. MOTIVATION
 Multimedia data can be categorized into various types
such as audio, video, still images, text, and graphics. The one
common attribute of all of these data types is that they all
require large amounts of space (Khoshafian and Baker, 1996).
For example, CD quality audio uses 1.4 Mb per second, NTSC
quality video uses 1.92 Mb per frame, and an image stored as a
bitmap can require 4,000,000 bytes (Aberer and Klas, 1992,
Woelk, et. al, 1990).

 One of the functions of a Multimedia Database
Management System (MMDBMS) is to allow users to
arbitrarily edit multimedia data (Grosky, 1994). The enormous
size of the multimedia data described above causes problems
for the database systems that must maintain it.
 To illustrate these problems, we will consider three
example applications. The first application is one for an interior
designer. This application would allow the designer to
decorate a room by editing a photo of it. Among the changes
the designer could make are changing the color of the walls
and carpet; adding, removing, or rearranging the furniture; and,
finally, changing the lighting in the room. The designer will
also want to save several different versions of the room and be
able to retrieve them to show to the customer.
 The second example application is one for a recording
studio. This application would allow producers to enhance a
recording by adding different sound effects to it. In addition,
the producers could add other voices or sample from other
songs to the recordings. The producers, of course, will want
to save several different versions of the recordings to
determine the ones that are the best to sell.
 The final example is an application for the development of
large scale software. During the coding and testing phases of
the development, several modifications will be made to the
source code. While debugging, the programmers will need to

2

save several different versions of the code, and then retrieve
the later.
 Each of these three examples stores a different type of
multimedia data, namely, still images, audio, and text. Each
application, however, has similar requirements. They must
allow a user to start with a base object, create new objects by
editing it, and save the new versions of the object.
 Since multimedia data is space intensive, when users
create and save several versions of these objects, they will
quickly run out of storage. Thus, for these and other similar
applications, it is necessary to use some abstractions of the
data that will allow appropriate references to the multimedia
objects, but use less space (Aberer and Klas, 1992, Klas and
Aberer, 1995).
 To solve this problem of editing multimedia data,
researchers have proposed taking advantage of the similarity
between the original and modified data files. In Gruenwald and
Speegle (1996), it has been proposed to develop an MMDBMS
that stores only the original data files with a series of
instructions explaining how to generate the new data.
 Figure 1 illustrates an example of this process for an
image database. A user performs an action on an image such
as clicking on the red option. The editor receives this action
and translates it into a standard operation, such as ‘change
color red’. The editor sends the command to the MMDBMS
which performs the corresponding operation (x, y, color) → (x,
y, red) on the image. The MMDBMS, then returns the
modified image to the editor, which will then display the new
image to the user.

Display Image

User Editor MMDBMS
Action Standard

Set of
Operations

“Click on Red” “Change Color Red” (x,y,color)→(x,y,red)
Figure 1 - View-Based MMDBMS Process for Images

 This method has many advantages over traditional image
data compression techniques. First, storing a sequence of
instructions can potentially save much more space than any
bitwise coding technique. Second, the given data compression
technique is lossless since the derived objects can be
recreated using the stored sequence of operations. Finally,
since this technique does not specify how the base object
should be stored, it can be used together with existing

compression techniques. For example, a base image in an
MMDBMS can be stored using the JPEG compression
standard, and the derived images can be stored using only a
sequence of image editing operations.
 For this method of data storage to be useful, it must be
portable. This means that any sequence of instructions
generated by a multimedia editor must be interpreted by any
other editor. For different editors to interpret the instructions
correctly, the set of operations used must be a part of some
previously standardized set. In Gruenwald and Speegle (1996),
this set of operations is called a Logical Model Language
(LML).
 The goal of this paper is to provide a theoretical basis for
establishing such a standardized set of image processing
operations. We will focus on two properties of a set of
operations, namely independence and minimality. We will
provide formal definitions of each of these properties, and
describe procedures for testing for them.
 The remainder of this paper is organized in the following
manner: In section 2, we will discuss the desired properties of
a set of image processing operations. In section 3, we will
define minimality, and demonstrate the testing procedure for it.
We will do the same for independence in section 4. Finally, in
section 5, we will summarize our work.

2. RELATED WORK
 Several researchers are compiling sets and lists of image
processing operations. Some are compiling the list of
operations for a particular application (Webb, 1992, Joseph
and Cardenas, 1988, Bengtsson et. al., 1981), while others are
creating the list for general use (Klette and Zamperoni, 1996).
To be able to argue that their lists are complete, however, the
researchers include as many image processing operations as
possible.
 In this paper, we use the definition of completeness
presented by Brown et. al. (1997). Specifically, a complete set
of image processing operations has the ability to express any
transformation from one image to another. In addition, Brown
et. al. (1997) demonstrates that although it may be inefficient,
this ability can be performed with a small number of operations,
specifically six.
 To extend the work performed by Brown et. al. (1997),
other useful properties of an LML must be determined. As in
Webb (1992), we view the set of image processing operations
as a little language. Little languages are defined as languages
that are used for a specific problem, but do not have the
features of traditional programming languages (Bentley, 1986).
 Bentley (1986) lists several goals of the design of a little
language. In addition to the ability of describing all possible
objects, the author states that the removal of any unnecessary
operations should also be a goal. To satisfy these two goals,

3

we will determine when an image processing operation in a set
is necessary by defining when a particular operation is
independent, and when the entire set is minimal.

3. MINIMALITY
 In Brown et. al. (1997), we provide a method for
determining if a given set of image processing operations is
complete. However, to justify that each operation in a
complete set is necessary, we must also show that the removal
of any operation from the set means that it is no longer
complete. More formally, we must show that no subset of the
set of operations is complete. This means that the set is
minimal.
 If a set is complete, then the addition of any operator will
result in a complete set. This can be proven from the fact that
since the original set of image processing operations is
complete, it can express all image transformations. Since
adding operations does not reduce the number of
transformations a set can perform, adding operations to a
complete set will always create another complete set.
 Conversely, if the addition of operators does not result in
a complete set, the original set was not complete. This implies
that if a set is not complete, then no subset of it will be
complete either. Using this information, we have developed
the following procedure to determine if a set is minimal:

 Let S be a set {O1, O2, ..., ON}, where each Oi is an image
procession operation.
 Show S is complete (Otherwise S is not minimal)
 For i = 1 to N
 Let S’ = S - {Oi).
 Show S’ is not complete (Otherwise S is not
minimal).

 We will apply this test for minimality on the LML
described by Brown et. al. (1997). This set consists of six
image processing operations called merge, define, mutate,
modify, combine, and applyfunction. The merge operation
combines two images together to form a new image. The
define operation creates a new image by selecting a subset of
an image and creating new pixels outside the image. The
mutate operation changes the location of some of the pixels in
the image. The modify operation changes the color of the
pixels in an image explicitly, while the combine operation
changes the color by calculating new values from the
neighbors. Finally, the applyfunction operation manipulates
the color mode used by the pixels.
 These six image processing operations are our set, S.
According to the procedure described above, the first step in
determining if S is minimal is to prove that S is complete. As an

example used to illustrate the testing procedure, this set was
proven complete by Brown et. al. (1997).
 The next step is to repeatedly remove an operation from
S, and test the remaining five operations for completeness. So,
defining O1 to be the merge operation, we will let S’ = S -
{merge}, then test if S’ is complete.
 According to the completeness test, we must show that
S’ can perform eight simple operations, otherwise it is not
complete. The eight operations are adding a pixel, removing a
pixel, adding a channel, removing a channel, changing the
horizontal position of the pixel, changing the vertical position
of the pixel, modifying a channel, and modifying the value of
the channel.
 These operations come from the definition of an image
used by Brown et al. (1997). This definition is formed from the
traditional notion of an image f(x, y) = (v1, v2, ... , vn), where x is
the horizontal position, y is the vertical position, and each v i is
a value of a channel of the pixel (Gonzales and Woods, 1992).
We convert this equation of an image to one describing an
image as a set of pixels, where each pixel is a set of triples {<x,
y, vi>}. When we explicitly represent each channel by a
variable ci, we define each pixel to be a set of 4-tuples {<x, y, ci,
vi>}.
 Both adding and removing a pixel can be performed by
the define operation in S’. Since one of its functions is to
create a new image by selecting a superset of an image, we can
add one new pixel to an image. Similarly, since one of the
functions of the define operation is to create a new image by
selecting a subset of an image, we can select all of the pixels
except the desired one in an image. Adding, removing, and
modifying a channel can all be performed by the applyfunction
operation, depending on the parameters used. The mu tate
operation can be used to change both the horizontal and
vertical positions of a pixel. Finally, the modify operation can
be used to change the value of a channel of a pixel.
 Since define, applyfunction, mutate, and modify are all in
S’, then S’ is complete. According to our procedure, since S’ is
complete, S is not minimal.
 As a different example, we will examine a new set
containing only three operations. These operations are define,
modify, and applyfunction, and they are defined in the same
way as above. We will call the set {define, modify,
applyfunction} T.
 Our first step in showing that T is minimal is to show that
T is complete. As stated above, adding and removing a pixel
can be performed by the define operation, and adding,
removing, and modifying a channel can be performed by the
applyfunction operation. Changing the value of a channel in
the pixel can be performed by modify.
 To change the horizontal and vertical positions of a pixel
in an image, we can use a combination of all three operations.
We can use define to remove the pixel from its current position,

4

then add it to its new position. To recreate the appropriate
channels and values, we can use the modify and applyfunction
operations.
 Since we can perform all of the eight simple operations
using the elements of T, the set T is complete. Next, we will
test T - {Oi} for completeness for values of i from 1 to 3.
 Let T’ = T - {define}. Since the remaining operations in
T’, modify and applyfunction, only edit the channels and their
values, it is not possible to add or remove a pixel from the
image. So, T’ is not complete.
 Next, we will set T’ = T - {modify}. Neither define nor
applyfunction can change the value of a channel in a pixel.
Thus, the set T’ cannot perform all of the eight simple
transformations, which means that it is not complete.
 Finally, we will set T’ = T - {applyfunction}. Neither of
the operations left in T’, define and modify, can add or remove
a channel from a pixel. So, like the previous cases, T’ is not
complete.
 Summarizing, the set T = {define, modify, applyfunction}
is complete. In addition, removing any operation from T
creates a new set T’ that is not complete. By our definition,
then, the set T is minimal.

4. INDEPENDENCE
 In mathematics, an axiom in a set is independent if it
cannot be derived from the other axioms in the set (Smart,
1988). We define an operation as independent using the same
ideas. Specifically, an operation in a set is independent if it
performs a transformation that cannot be expressed by any
combination of the other operations. We define the entire set
to be independent if all of the operations in the set are
independent of each other.
 This notion of independence is related to the concept of
minimality. Another way of stating that a set is minimal is
stating that a set is complete, and each operation in the set is
independent of the others. Thus, the method for proving that
a set of image processing operations is independent is similar
to the method of proving that a set is minimal. Formally, the
steps for proving a set independent are:

 Let S be a set {O1, O2, ..., OM}, where each Oi is an image
procession operation.
 For i = 1 to M
 Let S’ = S - {Oi).
 Show ∃ a transformation performed by {Oi} that
cannot be performed by S’
 (Otherwise S is not independent)

 We will demonstrate this procedure by testing the set of
six image processing operations used earlier, namely merge,
define, modify, combine, and applyfunction. To perform this

procedure, we must characterize all of the possible functions of
each of the operations. We will do this in terms of the eight
simple operations described above.
 The merge operation alters an image by combining it with
a new one. This means that it can modify the base image in
several ways depending on the parameters used with the
operation. By merging an image with a new pixel, it can add a
pixel to the base image, which means that it could add several
pixels to an image. By merging a pixel in the image with
another pixel at the same location, it could replace the existing
pixel or simply alter the channels or values of the channels of
that pixel. This means that it can add, remove, or modify
channels of a pixel as well as modify its values.
 Merge cannot, however, delete pixels from the base
image. By the definition of the merge operation given in
Gruenwald and Speegle (1996), merge only adds new pixels or
changes the color of existing pixels. Although it could change
the color of a pixel to match the background color, the pixel will
still be defined in the image. The definition of merge also
implies that it has no way of changing the horizontal and
vertical positions of a pixel.
 As stated earlier, the define operation transforms an
image by selecting a subset or superset of the image. This
implies that it can only add and delete pixels, and not change
the color of a pixel, nor change the channels on which the pixel
operates.
 The mutate operation shifts, rotates, enlarges, or shrinks
an image. So, it can change the horizontal and vertical
positions of an image. When it shrinks an image, it removes
pixels, and when it enlarges an image, it creates new pixels.
This operation, then, could be used to add or remove pixels as
well. Mutate does not affect the channels of the pixels nor
their values.
 The modify operation allows users to change the values
of the channels in the pixels. It does not, however, affect the
position of the pixels, and it does not add or remove pixels. In
addition, modify cannot alter the channels used by a pixel, only
its values.
 The combine operation is similar to the modify operation
except that it will calculate the new value of a pixel using
information from its neighbors. Like modify, it does not affect
the position of the pixels, the number of pixels in the image, or
the channels used by the pixels.
 Finally, the applyfunction operation edits the channels
used by an image. It can change, add, or remove channels
from some or all of the pixels. This operation, however, does
not add or remove pixels, change the position of the pixels, nor
change the values of the channels.
 Now that we have identified the basic functions of each
operation, we can determine whether each is independent. So,
we will let S, our set, equal {merge, define, mutate, modify,

5

combine, applyfunction}, and let S’ = S - {merge}, which
equals to {define, mutate, modify, combine, applyfunction}.
 As stated above, the merge operation can add pixels, edit
the colors of the pixels, and edit their channels. These
operations can be performed with the remaining operations in
S’. The define operation can add pixels, the combine operation
can change the color of the pixels, and the applyfunction
operation can edit their channels. So, each operation that can
be performed by merge can be performed by the operations in
S’, which means that merge is not independent.
 Removing {define} from S yields the new set S’ = {merge,
mutate, modify, combine, applyfunction}. The define
operation can add and remove pixels, and these operations can
be performed by merge and mutate, respectively. Since the
operations that can be performed by define can be performed
by the operations in S’, define is not independent.
 When S’ = S - {mutate}, S’ becomes {merge, define,
modify, combine, applyfunction}. The mutate operation adds
and removes pixels as well as changes the horizontal and
vertical positions of the pixels. To add and remove operations,
we can use the define operation. To change the position of
pixels, however, we must use a combination of the other
operators.
 Changing the position of a pixel can be duplicated by
removing the pixel, adding a new one in the appropriate
position, then setting the channels and colors. The define
operation can perform the removal and addition of pixels from
the necessary positions. To set the appropriate channels and
colors, we can use the applyfunction and modify operations.
This means that the transformations performed by the mutate
operation can be duplicated by the operations in S’. So,
mutate is not independent.
 The only transformation that modify performs is to
change the color of the pixels in an image. This can also be
performed by the combine operation. When S’ = S - {modify},
S’ = {merge, define, mutate, combine, applyfunction}. Since
combine is in S’, S’ can perform all of the transformations that
modify can perform, and that means modify is not independent.
Similarly, when S’ = S - {combine}, S’ = {merge, define, mutate,
modify, applyfunction}. So, S’ can perform all of the
transformations that combine can perform, which means that
combine is also not independent.
 Finally, let S’ = S - {applyfunction}. This means that S’ =
{merge, define, mutate, modify, combine}. The applyfunction
operation adds, removes, or modifies the channels that an
image uses. Since the merge operation can also add, remove,
or modify a channel, S’ can perform all of the transformations
that applyfunction can. So, like the other operations in S,
applyfunction is not independent.
 If there were an image transformation that one of these
operations, say Oi, performed that could not be duplicated by
the other operations in S, then Oi would be independent. As

demonstrated, this is not true for any of the operations in the
example LML. Since there exists an operation in S that is not
independent of the others, the entire set is not independent.

5. CONCLUSION AND FUTURE WORK
 In the preceding sections, we have presented methods
for determining if a set of image processing operations is
minimal, and if it is independent. To accomplish this, we have
explicitly defined minimality and independence, and what it
means for a single operation to be independent of others in a
set. In addition, we have shown that the Logical Model
Language (LML) presented by Gruenwald and Speegle (1996)
is neither minimal nor independent. Furthermore, none of the
image processing operations in the LML are independent of
the others. This means that to justify their inclusion in a
standardized LML, we must develop different criteria.
 One possible method of justification is to count the
number of operations it takes to duplicate the transformations
of a particular operation. This would give us a basis for
measuring efficiency. Even though it may be obvious that it is
more efficient to have some specific operation, we would be
able to state the number of transformations saved by including
it. Instead of determining when an operation is independent,
we would determine what transformations cannot be
duplicated in k operations, where k ≥ 0.
 In addition, we must extend our work to the other types
of multimedia data listed earlier. Using similar criteria to the
ones used earlier, we must develop LMLs for audio, video, and
text. In addition, a prototype application must be developed to
determine the space savings generated by a view-based
multimedia database management system.

REFERENCES
 Aberer, K., and Klas, W., 1992, “The Impact of
Multimedia Data on Database Management Systems”,
International Computer Science Institute, Berkeley, California.
 Bengtsson, E. et. al., 1981, “Cello: An Interactive System
for Image Analysis”, Lecture Notes in Computer Science, 109,
Digital Image Processing Systems , Springer-Verlag, New York,
pp. 21-45.
 Bentley, J., 1986, “Little Languages”, Communications of
the ACM, Vol. 29, No. 4, August, pp. 711-721.
 Brown, L., Gruenwald, L., and Speegle, G., 1997, “Testing
a Set of Image Processing Operations for Completeness”,
Proceedings of the 2nd International Conference on
Multimedia Information Systems, pp. 127-134.
 Gonzales, R. C., and Woods, R. E., 1992, Digital Image
Processing, Addison-Wesley, Reading, Massachusetts.
 Grosky, W., 1994, “Multimedia Information Systems”,
IEEE Multimedia Systems, Spring, pp. 12-24.

6

 Gruenwald, L., and Speegle, G., 1996, “Research Issues in
View-Based Multimedia Database Systems”, Proceedings of
the 2nd World Conference on Integrated Design and Process
Technology.
 Joseph, T., and Cardenas, A. F., 1988, “PICQUERY: A
High-Level Query Language for Pictorial Database
Management”, IEEE Transactions on Software Engineering,
Vol. 14, No. 5, pp. 630-638.
 Khoshafian, S., and Baker, B., 1996, Multimedia and
Imaging Databases, Morgan Kaufmann, San Francisco,
California.
 Klas, W., and Aberer, K., 1995, “Multimedia
Applications and their Implications on Database
Architectures”, Advanced Course on Multimedia Databases in
Perspective, University of Twente, The Netherlands.
 Klette, R. and Zamperoni, P., 1996, Handbook of Image
Processing Operations, John Wiley & Sons, New York.
 Smart, J. R., 1988, Modern Ge ometries, Brooks/Cole
Publishing, Pacific Grove, California.
 Webb, J. A., 1992, “Overcoming the Barriers to
Architecture-Independent Image Processing”, Proceedings:
Image Understanding Workshop.
 Woelk, D., Kim, W., and Luther, W., 1990, “An Object-
Oriented Approach to Multimedia Data”, Readings in Object-
Oriented Systems , Morgan Kaufmann, San Mateo, California,
pp. 592 - 606.

