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Abstract.  In order to improve the robustness of systems that perform 

similarity searching, it may be necessary to augment a collection of images in a 
Multimedia DataBase Management System (MMDBMS) with an additional set 
of edited images.  Previous research has demonstrated that space can be saved 
in such a system by storing the edited images as sequences of editing operations 
instead of as large binary objects.  The existing approaches for performing 
similarity searching in an MMDBMS, however, typically assume that the data 
objects are stored as binary objects.  This paper proposes algorithms for 
performing color-based similarity searches of images stored as editing 
operations and provides a performance evaluation illustrating their respective 
strengths and weaknesses. 

1. Motivation 

Because images and other types of multimedia data objects are different than 
traditional alphanumeric data, a MultiMedia Database Management System 
(MMDBMS) has different requirements from a traditional database management 
system.  For example, multimedia data is typically larger than traditional data, so an 
MMDBMS should utilize efficient storage techniques.  In addition, users interpret the 
content of images and other multimedia data objects when they view or hear them, so 
an MMDBMS should facilitate searching in those systems utilizing that content.  
Also, the binary representation of two images of the same objects may be very 
different, so an MMDBMS must perform similarity searching of images as opposed to 
searching for exact matches. 

To facilitate similarity searching, systems typically extract features and generate a 
signature from each image in the database to represent its content in order to search 
those features in response to a user’s query.  For searching a heterogeneous collection 
of images, systems will often compare images utilizing a combination of low-level 
features including color, texture, and shape as in [1].  When searching images under a 
specific domain, such as searching a set of facial images, systems will often extract 
more complex features for searching such as the shape and location of noses, eyes, 
mouths, and hair outline [2, 3].  Irrespective of whether the features are low-level or 



 

high-level, the underlying system typically searches for images that are similar to a 
query image Q by first extracting the desired features from Q and then comparing 
them to the previously extracted features of the images in the database. 

One of the limitations of the above approach for performing similarity searching is 
that it is dependent upon having the binary representations of all of the images that are 
stored in the database so that features can be extracted or a signature can be 
generated.  To illustrate why this can be a limitation, consider the problem of facial 
recognition in an example application of a crime database containing a collection of 
suspects’ faces.  It is difficult enough to match images of the same faces under 
varying lighting conditions [2], but the current research does not appear to sufficiently 
address the problem of matching a facial image from a person intentionally trying to 
disguise themselves utilizing either simple techniques such as adding or removing 
facial hair or extensive technique such as undergoing plastic surgery. 

One technique for addressing the above problem is to expand a given query image 
Q into several query images.  Each query image is created by image by editing Q 
using common disguises and then submitted to the database as a separate query.  The 
results from all of the query images are combined together to form one result.  This 
technique is analogous to text retrieval systems that augment terms in a user’s query 
utilizing a manually produced thesaurus before searching a collection of documents.  
The problem with this approach for searching images is that the features must be 
extracted from each query image in order to search the underlying MMDBMS.  
Because this is a very expensive process, the time needed to respond to the query will 
dramatically increase. 

Instead of utilizing the above technique, the system may simply augment the 
collection of images stored in its underlying database with edited versions of the 
images.  So, for each image object O in the database, the system will store O along 
with a set of images created by transforming O with editing operation sequences 
representing common disguises.  Thus, the system augments its database with a set of 
edited images derived from its original collection. 

As an alternative to storing all images in such a database in a binary format, 
previous research [4] proposed to save space by storing the images derived from an 
original base image object O in a virtual format, meaning that they are each stored as 
a reference to O along with the sequence of editing operations that were used to create 
it.  Displaying an image stored virtually can be accomplished by accessing the 
referenced image and sequentially executing the associated editing operations on it, 
which is a process called instantiation [4]. 

The use of virtual images can be beneficial in numerous application areas in 
addition to law enforcement.  Specifically, they are useful in any applications in 
which users create and store new objects by editing existing ones.  For example, this 
approach will be useful in multimedia authoring environments where several versions 
of various images created by a user can be archived [5] such as publishing and web 
design.  Virtual images will also be useful in the area of medicine where plastic 
surgeons can illustrate the changes they intend to make to their patients by editing 
their photo.  Finally, virtual images can be useful for business applications where 
users order customized objects by selecting from a list of external features and 
enhancements, such as ordering clothes, class rings, or other types of apparel. 



 

As a first step in investigating approaches for searching databases augmented with 
derived images, this paper focuses on searching a heterogeneous collection of images 
by color.  Systems that search by color typically extract features from each image to 
represent its content and then search those features in response to a user’s query.  
When extracting color features, one common method is to generate a histogram for 
each image stored in the database where each bin contains the percentage of pixels in 
that image that are of a particular color.  These colors are usually obtained by 
quantizing the space of a color model such as RGB or Luv into an equal number of 
divisions.  To search for images that are similar to a query image Q, the MMDBMS 
can compare the histograms stored in the database to the histogram of Q.  Common 
functions used to evaluate the similarity between two n-dimensional histograms <x1, 
…, xn> and <y1, …, yn> include (1) the Histogram Intersection [6] and (2) the Lp 
Distances [7]. 
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The above distance functions allow the system to process nearest-neighbor queries of 
the type “Retrieve the k images that are the most similar to Q”.  Systems that perform 
similarity searches using methods involving histogram-based techniques include [1, 8, 
9, 10]. 

The above histogram techniques are used for color-based searching in systems that 
assume all of the images, including any derived ones, are stored in a binary format.  
New color-based searching algorithms and techniques are needed for systems that 
save space by storing derived images virtually.  The purpose of this paper is to present 
three such techniques and compare their respective performances to the above 
approach of storing all images in a binary format.  The remainder of this paper has the 
following format.  Each of Sections 2, 3, and 4 presents a different approach for 
searching virtual images by color.  Section 5 presents the results of a performance 
evaluation comparing these three approaches to the conventional approach.  Finally, 
Section 6 summarizes the paper and describes the future work. 

2. Virtual Storage that Instantiates during Searching (VSIS) 

The previous section described the conventional approach to searching images using 
color-based features which stores all images in a binary format.  This paper refers to 
this approach as Binary Storage with Histograms (BSH), and algorithms for it are 
presented in Figures 2 and 3.  The insertion process for BSH is displayed in Figure 1, 
and in it, histograms are extracted from all images as they are inserted into the system.  
The histogram of an image is stored in the database along with the object ID of the 
image.  The BSH algorithm for processing similarity searches of the type “Retrieve 
the k images that are the most similar to Q” is provided in Figure 2.  In the algorithm, 



 

a histogram is extracted from the query image Q and compared to the histograms 
stored in the database to identify the k most similar images. 
 

1. Extract histogram from the image 
2. Store the image in database with an image ID 
3. Store histogram and image ID together in the database 

Fig. 1.  BSH Algorithm for Inserting Images 
 

1. Identify the query image Q and the number of desired images k from the given query 
2. Extract the histogram from Q and call it HQ 
3. For each histogram, H, stored in the database 
 3.1 Compute the distance between H and HQ 
 3.2 Remember the k images corresponding to the histograms that are the
 smallest distances from HQ 
4. Return the identifiers of the images stored in Step 3.2 

Fig. 2.   BSH Algorithm for Sequentially Processing Similarity Searches 
 

Elements of BSH are used as part of the first strategy for processing similarity 
searches in MMDBMSs that store edited images virtually.  The strategy is based upon 
instantiating the virtual images into a binary format during the searching and then 
using conventional histogram techniques to search them.  Since instantiation is 
performed during searching, this paper refers to these algorithms as the Virtual 
Storage that Instantiates while Searching (VSIS) approach.  In this approach, the 
images that are stored virtually are directly inserted into the database without any 
feature extraction processing, while histograms are extracted from the images stored 
in a binary format.  This process for inserting images using the VSIS strategy is listed 
in Figure 3. 
 

1. If image is binary 
 1.1 Extract the histogram from the image 
 1.2 Store the image in the database using its ID 
 1.3 Store histogram and image ID together in the database 
2. Else 
 2.1 Store the virtual image in the database using its ID 

Fig. 3.  VSIS Algorithm for Inserting Images 
 

When performing a similarity search, the VSIS algorithm begins in the same 
manner as the BSH algorithm described earlier.  Specifically, a histogram is extracted 
from the query image and then compared to the histograms previously extracted from 
the binary images.  The difference is that the VSIS algorithm must determine the 
distances from the query image to the images stored virtually.  This is accomplished 
by accessing the virtual images, instantiating them, and then extracting histograms 
from them.  When this process is complete, these newly extracted histograms can be 
compared to the histogram of the query image in order to determine the images that 
correspond to the smallest distances.  The algorithm is presented in Figure 4. 
 
 



 

1. Identify the query image Q and the number of desired images k from the given query 
2. Extract the histogram from Q and call it HQ 
3. For each histogram, H, stored in the database 
 3.1 Compute the distance between H and HQ 
 3.2 Remember the k images corresponding to the histograms that are the 
 smallest distances from HQ 
4. For each virtual image, V, stored in the database 
 4.1 Instantiate V 
 4.2 Extract Histogram H from the Instantiated Image 
 4.3 Compute the distance between H and HQ 
 4.4 Update the list of k images with histograms that are the smallest distances 
 from HQ 

Fig. 4.  VSIS Algorithm for Sequentially Processing Similarity Searches 

3. Virtual Storage that Instantiates during Inserting (VSII) 

The second strategy to performing similarity searches with virtual images avoids 
image instantiation during searching.  Instead, the virtual images are instantiated at 
the time they are inserted into the database.  Thus, this paper refers to this strategy as 
the Virtual Storage that Instantiates during Inserting (VSII) approach. 

 
1. If image is binary 
 1.1 Extract the histogram from the image 
 1.2 Store the image in the database using its ID 
 1.3 Store histogram and image ID together in the database 
2. Else 
 2.1 Instantiate the virtual image 
 2.2 Extract the histogram from the instantiated image 
 2.3 Store histogram and image ID together in the database 
 2.4 Discard the instantiated image 
 2.5 Store the virtual image in the database using its ID 

Fig. 5.  VSII Algorithm for Inserting Images 
 

Figure 5 displays the details of the VSII insertion algorithm.  After a virtual image 
is instantiated, the system extracts and stores its histogram.  Once the histogram is 
saved, the instantiated image is then discarded leaving only the virtual image to be 
added to the database.  Also, since the VSII algorithm generates a histogram from 
both binary and virtual images when they are inserted, VSII can use the same 
searching algorithm as BSH.  Thus, the algorithm in Figure 2 can be used to perform 
similarity searches for VSII. 

A disadvantage of both VSIS and VSII is that instantiation is a slow process.  
Consequently, VSIS will quickly insert images, but perform poorly when performing 
similarity searches.  Alternatively, VSII will perform similarity searches as quickly as 
BSH, but it will perform poorly when inserting virtual images.  The next section will 



 

present a third strategy that is able to process similarity searches without instantiating 
images, thus saving time over both VSIS and VSII. 

4. Virtual Storage with Rules (VSR) 

The VSR algorithm processes similarity searches in systems that store edited images 
virtually without instantiating the virtual images.  This means that VSR uses the same 
insertion algorithm as VSIS, which inserts virtual images directly into the database as 
shown in Figure 3. 

The VSR algorithm for processing similarity searches is shown in Figure 6, and it 
consists of two major tasks.  The first task is to identify the distances from the binary 
images in the database to the query image Q, and the second task is to identify the 
distances of the virtual images to Q.  In the first three steps, the binary images’ 
distances are computed using the same technique as in BSH, which is to compare 
histograms.  The remaining steps compute the distance from Q to each virtual image 
based upon the Histogram Intersection [6].  Thus, the distance from Q to a virtual 
image V is computed the sum of the minimum values of their corresponding bins.  
Since the minimum values are desired, Step 4 of the algorithm determines the bins 
that are nonzero in the histogram of Q.  The next step is a loop that executes once for 
each bin identified in the previous step, where the purpose of this loop is to determine 
the minimum values of the corresponding bins. 
 

1. Identify the query image Q and the number of desired images k from the given query 
2. Extract the histogram from Q and call it HQ 
3. For each histogram, H, stored in the database 

3.1 Compute the distance between H and HQ. 
3.2 Remember the k images corresponding to the histograms that are the 
smallest distances from HQ 

4. Enumerate the colors in the query image using the histogram HQ 
5. Loop until there are no more colors in Q or all virtual images are eliminated 

5.1 Identify the histogram bin HB corresponding to the next color in HQ 
5.2 Let match equal the value in bin HB of HQ 
5.3 Using rules, eliminate the virtual images that do not have a value in bin HB 
within δ of match, where δ is the distance from Q to the kth most similar image. 
5.4 For each remaining virtual image V 

5.4.1 Increase V’s distance from Q by the minimum of match and its 
value in bin HB. 

5.5 Update the list of k images that are closest to Q using the distances of the 
remaining virtual images 

Fig. 6.  Rule-Based Algorithm for Processing Similarity Searches 
 
The following steps are performed during each iteration of the above loop.  First, 

the current bin is denoted as bin HB.  Next, the algorithm identifies the value of the 
histogram of Q in bin HB and stores it in match.  Given match, the algorithm must 
identify the value in bin HB for each virtual image.  Once this value is identified for a 



 

virtual image V, the distance from Q to V is increased by that value to comply with 
the histogram intersection. 

The key step in the above algorithm is the identification of the value in bin HB for 
a virtual image.  Since the proposed approach never instantiates the virtual images, no 
histograms are stored for them.  Thus, this algorithm must estimate the value that 
would be in bin HB for a virtual image if it were instantiated.  This estimation is 
accomplished using rules establishing the effects of editing operations on the 
percentages of colors that are contained in an image.  The rules used are dependent 
upon the editing operations that may appear in the virtual images, which are restricted 
to the set of operations listed in [4], Define, Combine, Modify, Mutate, and Merge.  
The reason why this set is used is that it can be used to perform any image 
transformation by manipulating a single pixel at a time [11]. 

The Define operation selects the group of pixels that will be edited by the 
subsequent operations in the list, and the parameters to the operation specify the 
coordinates of the desired group of pixels, called the Defined Region (DR).  The 
Combine operation is used to blur images by changing the colors of the pixels in the 
DR to the weighted average of the colors of the pixels’ neighbors, and the parameters 
to the operation are the weights (C11, …, C33) applied to each of the neighbors.  The 
Modify operation is used to explicitly change the colors of the pixels in the DR that 
are of a certain color, RGBold, and the parameters of the operation specify that old 
color as well as the new color, RGBnew.  The Mutate operation is used to move pixels 
within an image, and the parameters specify the matrix (M11, …, M33) used to shift the 
locations of the pixels.  Finally, the Merge operation is used to copy the current DR 
into a target image, and the parameters specify the target image, target, and the 
coordinates specifying where to copy the DR (xp, yp). 

The purpose of each rule is to determine how its corresponding editing operation 
can change a given histogram bin HB.  Thus, each rule is expressed as an adjustment 
to the minimum and maximum bounds on the percentage of pixels that may be in bin 
HB when the virtual image is instantiated.  The percentages are adjusted by 
repeatedly updating the total number of pixels that are in the image as well as the 
minimum and maximum number of pixels that are in bin HB for each editing 
operation listed in the virtual image. 

Both the Combine and Modify operations only change the colors of the pixels in 
the current DR.  Because of this, one rule for both operations is that the total number 
of pixels in the image will neither increase nor decrease after their application.  In 
addition, the number of pixels that may change color is bounded by the number of 
pixels in the DR, denoted |DR|.  So, depending on whether RGBold or RGBnew maps to 
bin HB, the number of pixels in bin HB may increase or decrease by at most |DR| as a 
result of the Modify operation.  While |DR| also serves as a bound for the number of 
pixels that may change as a result of the Combine operation, note that pixels within 
homogeneously colored regions will not change because the operation determines a 
new color for a pixel based on the average color of its neighbors.  As a result, the rule 
for the Combine operation is that the adjustment to the number of pixels that are in 
bin HB will be so small that it can be ignored. 

The Mutate operation can scale the pixels in the DR to overwrite other locations in 
the image, which means that it can dramatically alter the distribution of colors within 
an image.  Consequently, the rules for the Mutate operation are based on specific 



 

instances of its parameters.  One such rule is that if the current DR contains the whole 
image, then the distribution of colors in the image should remain the same.  Another 
rule is that if the parameters imply a rigid body transformation [12], then the DR will 
simply be moved without any scaling.  Thus, the total number of pixels that may 
change color is bounded by |DR| as in the Modify operation. 

The rules for the Merge operation adjust the percentage of pixels in bin HB based 
on the combination of the pixels in the DR and the colors in the target image.  Table 1 
provides the formulae for computing these adjustments based on the parameters of the 
operation, along with a summary of the rules for the Combine, Modify, and Mutate 
operations presented previously.  In the table, |V| represents the number of pixels in 
the virtual image, |T| represents the number of pixels in the target image of the Merge 
operation, |THB| represents the number of pixels in the target that are in bin HB, 
|HB|min represents the minimum number of pixels in bin HB, and |HB|max represents 
the maximum number of pixels in bin HB. 
 

Table 1.  Rules for Adjusting Bounds on Numbers of Pixels in Bin HB 

Editing 
Operation Conditions 

Minimum 
Number in 
bin HB 

Maximum 
Number in 
bin HB 

Total Number 
of Pixels in 
Image 

Combine 
(C11, …, C33) 

All No change No change No change 

Modify 
(RGBold, 
RGBnew) 

RGBnew maps 
to HB No Change Increase by 

|DR| No Change 

 RGBold maps 
to HB 

Decrease by 
|DR| No Change No Change 

Mutate  
(M11, M12, M13, 
M21, M22, M23, 
M31, M32, M33) 

DR contains 
image 

Multiply by 
|M11×M22| 

Multiply by 
|M11×M22| 

Multiply by 
|M11×M22| 

 Rigid Body Decrease by 
|DR| 

Increase by 
|DR| No Change 

Merge 
(Target, xp, yp) 

Target is 
NULL 

|DR| – (|V| – 
|HB|min) 

MIN[|HB|max, 
|DR|] |DR| 

 Target is Not 
NULL 

|DR| − (|V| − 
|HB|min) 

+ 
|THB| – |DR| 

MIN(|HB|max, 
|DR|) 

+ 
MIN(|THB|, |T| 

– |DR|) 

[MAX((xp+x2–
x1), height of 

Target) – 
MIN(xp,0)+1] 

× 
[MAX((yp+y2–

y1), width of 
Target) – 

MIN(yp,0)+1] 
 



 

5. Performance Evaluation 

The proposed algorithms presented in this paper have been implemented as part of a 
web-enabled prototype virtual image retrieval system [13] accessible from the URL 
http://www.cs.ou.edu/~lbrown.  Modules in the above prototype were used to conduct 
tests to evaluate the performance of the algorithms proposed in this paper in terms of 
permanent storage space required, insertion time, searching time, and searching 
accuracy.  The data set consists of 5 groups of images, where each group contains one 
binary image and 99 edited images stored virtually yielding a total of 500 images.  
The parameters of the evaluations are listed in Table 2.  The binary images in the 
random data set were taken from a combination of various collections of images 
representing different application areas including law enforcement, space exploration, 
business, and weather [14].  Each virtual image in the data set was created by 
randomly selecting a binary image as the base image and randomly generating editing 
operations from [4] for it.  Table 3 summarizes the results of the evaluation, and it 
illustrates the strengths and weaknesses of each of the proposed approaches. 
 

Table 2.  Parameters Used in Evaluation 

Description Default 
Value 

Number of Images in the Database 500 
Number of Binary Images in the Database 5 
Number of Virtual Images in the Database 495 
Average Number of Operations within a Virtual Image 2.11 
Average Size of Binary Images in the Database (in bytes) 11396.60 
Average Size of Virtual Images in the Database (in bytes) 70.27 
Average Size of Histogram Extracted From Binary Images (in bytes) 190.40 

 
Table 3.  Summarized Results of Performance Evaluation 

Approach Storage 
Space (MB) 

Insertion Time 
(sec) 

Searching 
Time (sec) 

Searching 
Accuracy 

BSH 14.36 876.90 2.29 83% 
VSR 0.09 6.54 2.33 73% 
VSIS 0.09 6.54 12174.96 83% 
VSII 0.15 13049.23 2.29 83% 

 
BSH has the advantage of being simple.  All images can be stored in the same 

format so the underlying database management system only needs to manipulate one 
type of image.  Also, one of the main reasons of using features or signatures to search 
images is that it will be much faster than analyzing the images themselves during 
searching, so the BSH approach is as fast as the other approaches in terms of 
searching time.  The disadvantage of BSH is that it consumes the most space of the 
four approaches since no images are stored virtually.  Because the virtual approaches 
stored 99% of the images virtually, they used 99.35% less space than BSH.  In 
addition, BSH extracts histograms from all images during insertion, so it was also 
99.95% slower than VSR and VSIS when inserting the images. 



 

One of the advantages of VSIS is that is saves space by storing images virtually.  
In addition, the approach does not store or extract any information from virtual 
images when they are first inserted, so it is as fast as VSR when inserting images.  
Another advantage of VSIS is that it produces the same results as BSH since it is 
histogram-based.  The main disadvantage of VSIS is that it is extremely slow when 
processing retrieval queries since it instantiates all of the virtual images and extracts 
their histograms.  Both VSR and BSH were 99.98% faster than VSIS when searching 
the images. 

VSII extracts histograms from all images like BSH, so it shares some of the same 
advantages.  Specifically, VSII searches as quickly as BSH, and the searches produce 
the same results.  In addition, VSII used 98.91% less space than BSH in the tests due 
to it storing images virtually.  The main disadvantage of VSII is that it is slow when 
inserting virtual images into the underlying database management system since it 
instantiates the images before extracting their features.  In the tests, VSR and VSIS 
were 99.95% faster when inserting images. 

VSR has the advantage that it required 99.35% less space than BSH.  It also 
required 40.79% less space than the VSII approach since it does not store histograms 
for all images.  The main contribution of VSR, however, is that it does not instantiate 
while inserting virtual images or searching them.  The result is that in the tests, it was 
99.98% faster than the VSIS approach when searching and 99.95% faster than the 
VSII approach when inserting.  A disadvantage of VSR is that it does not produce the 
same results as the other approaches.  During the tests, it was 12.3% less accurate. 

Considering the above discussion, BSH is best suited for applications that are most 
dependent on retrieval time and not space or insertion time.  Thus, the approach is the 
most appropriate for applications with static data sets that are searched frequently, 
such as medical diagnostic applications where an image taken from a patient may be 
compared with images of known diseases.  BSH is also appropriate for data sets that 
do not contain sets of images that are similar; otherwise, they will waste space.  VSIS 
is not suitable for applications that allow users to frequently perform content-based 
searches.  Thus, VSIS is best suited for applications in which users may constantly 
create and add new images to the database but rarely retrieve them, such as 
applications that archive data.  VSII is not appropriate for applications in which users 
will frequently update the database by adding new images.  Instead, VSII is most 
appropriate for many of the same applications as BSH, which include applications 
with static data sets that are frequently searched.  The difference is that VSII should 
be used with those applications that store edited images, such as one that displays 
standard automobile models that differ only in color.  Finally, VSR is best suited for 
applications where users frequently edit existing images and add them to the 
underlying database with the intention that those images will also be searched 
frequently.  Applications with these characteristics that also need to reduce the 
amount of space by storing the edited images virtually include web-based stores 
where users want to browse similar images of products that are updated quickly. 



 

6. Summary and Future Work 

MultiMedia DataBase Management Systems (MMDBMSs) focus on the storage and 
retrieval of images and other types of multimedia data.  In data sets that contain 
derived images, storing them virtually allows the images to be stored using a smaller 
amount of space when compared to storing them in conventional binary formats.  This 
paper presented three different strategies for searching derived images stored 
virtually. 

This paper focused on searching a heterogeneous collection of images utilizing 
color features.  As a result, the rules used in the VSR approach focused on identifying 
the effects of editing operations on color features.  In order to continue with the VSR 
approach, it will be necessary to identify rules for retrieving images using other 
features besides color, such as texture and shape.  Ultimately, rules must be identified 
for identifying the effects of editing operations on more complex features within a set 
of images from a specific domain, such as the effects of common disguises on the hair 
color, eye color, eye shape, and nose length on an image of a face. 

It is also worth noting that the rules presented in this paper attempt to estimate the 
effect of editing operations on color histograms.  So, if the rules were perfect, a 
system using VSR would retrieve images with the same accuracy as the histogram or 
feature-based approaches.  An alternative approach would be to develop rules that 
ignore the features extracted from images altogether.  Such an approach would be 
based on the transformation approach [15] which computes the similarity between 
two images as the cost required to transform one into the other.  This cost could be 
computed directly from the editing operations listed within the semantics of a virtual 
image.  Such an approach would allow the VSR approach to potentially be more 
accurate than the feature-based approaches. 

Another open research area is to evaluate the effect of using algorithms that are 
hybrids of the VSR and VSII algorithms presented in this paper.  For example, one 
such hybrid approach could store histograms corresponding to some of the virtual 
images in order to optimize both the permanent storage space and retrieval time.  An 
open issue, then, in creating such a hybrid approach is how to determine which 
histograms to store that optimize those metrics. 

Finally, an area of future work is to construct and compare indexes for each of the 
three proposed strategies for searching virtual images.  While many multidimensional 
indexes exist for arranging histograms extracted from images, new methods are 
needed to efficiently arrange the data for VSIS and VSR, which do not store extracted 
histograms. 
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