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ABSTRACT

A sensor’s data loss or corruption, aka sensor oesaing, is a
common phenomenon in modern wireless sensor neswdirks
more severe for multi-hop sensor network (MSN) &apions
where sensor data reach the base station viatheors; hence a
sensor’s failure can cause multiple missing daltathis paper we
present MASTER-M, a data estimation framework basediata
clustering and association rule mining to estintae values of
missing sensor data for MSN. Estimating, instehdesending,
the missing sensor data is becoming popular asay reduce
query response time and sensor energy consumpitiovever the
current works cater to only single-hop sensor neteoTo fill
this gap, our novel technique addresses the isslaed to MSN,
such as simultaneous missing sensors and missiagal§p
correlated sensors. It consists of three stepslutering sensors
online; 2) capturing association rules between @snisiside each
cluster, and 3) estimating the values of the méssiata using the
obtained association rules. Experimental resultbath real-life
sensor data and synthetic sensor data demonsimtfficacy of
MASTER-M in terms of estimation accuracy comparedtiie
existing techniques. Moreover, we also present raxeats
showing the supremacy of data estimation by MAST&RA
terms of energy savings over re-transmission ofimisdata.
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1. INTRODUCTION

Wireless sensor networks are deployed and utiliméEly in

environment monitoring [18], scientific investigati [12], roads,
bridges, and civil structure flaw detection, batterveillance,
medical applications [19] and many other fieldewdver, under
the current wireless sensor networks technologyireless sensor
node is prone to hardware failures such as powertaes and
mal-functioning of sensor nodes. In addition, netwissues, such
as connection interruption and package collisiceayse further
problems in data assimilation. Due to those reasserissor data
may fail to reach the base station; we call sudh dassing data.
The sensors which generate these missing dateaee enissing
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sensors throughout this paper.

To compensate for the missing data, researchers peposed
several solutions, such as ignoring the missing,d@ierying the
network again, using backup sensors, and estimatiaging data
[5]. Ignoring missing data is not a very efficiesblution for
sensitive applications and querying the networkiraggm neither
time efficient nor realistic. Using backup sensadssanother
expensive solution which may bring up issues suEhlealing
with data duplication. Thus estimation of the valoéthe missing
data may be one of the optimal solutions.

Some research has been done for estimating misiatg in
sensor networks [17], [2], [13], but most of théséirg research is
designed for single hop sensor networks where serssmd data
directly to the base station through a single hommunication.
As the demand of deploying sensor networks in adxp scope
emerges, more and more wireless sensor networksoafigured
in a multi-hop communication fashion. In these rwks, as
shown in Figure 1, sensors are usually placeavay from the
base station, and the distant sensors use otleemiadiate sensors
to route the data to the base station. Most exgjssimlutions for
missing sensor data estimation are not suitableniatti-hop
sensor networks as they do not consider the newlgrging
issues associated with these networks, which weritbesbelow.

-
X -
‘./E,_/ L ‘—-&_‘___ (o))
/!/ Base station
- - Wireless
B t/ﬁ/ Sensor
/Communication
/u/ link
=~

Figure 1. Multi-hop sensor networks ar chitecture

Due to multiple hops in the routing path, in a rbtip sensor
network more missing data are generated comparsihge-hop
routing. Moreover, critical routing node failuresayncause all
messages routed by these nodes to miss simultdpe@use to
the large size and complexity of multi-hop networksis very
difficult to predict how, when, and how many sesswill be
missing.

Another issue related to sensor network is thasémsors close to
the base station are more likely to die faster tth@nsensors far
away from the base station; this situation is kn@sblack hole
effect[20]. Failures of the sensors close to the bag@®staause
all traffic data which had been passing through'dead’ sensors



previously to be missing. The problem is more sevarmulti-
hop networks; therefore, missing data estimatiolutiems in
these networks need to be more robust with reg¢pebe number
of missing sensors.

Finally, single hop sensor networks are typicallgsidned to
monitor small-scale, stable phenomena, while nhdf- sensor
networks are heterogeneous networks and desigmetbfoplex,

large-scale, and changing phenomena. An examptbeofatter

can be seen in the heat transferring applicatidsl. [In this

application, in a relatively big region, quite avfesensors are
deployed to monitor and report temperature. Theeenaultiple

heat sources in a region, and complex isothermsbeaformed.
The heat resource might adjust the function to lighow level,

and it might even move. All of these cause the tadpre
distribution in the region unstable and changealle, the
phenomenon might keep changing in the environmeat the
multi-hop sensor networks are monitoring.

In this paper, we propose a robust algorithm, dalFASTER-M,
to estimate the values of the missing sensor datenulti-hop
sensor networks. It takes the issues associatédivdse networks
into consideration. The rest of the paper is ormgthias follows:
Section 2 discusses the related works and issules tmldressed;

Section 3 describes MASTER-M; Section 4 presente th

experimental results comparing MASTER-M with exgti
technigues in terms of estimation accuracy andwei@ttime for
both real-life and synthetic test data; Section i§cubses the

energy savings of MASTER-M; and Section 6 provides

conclusions and future research.

2. RELATED WORK AND ISSUES

The problem of estimating missing data has receigemving
attention from researchers in various disciplinesich as
mathematics, engineering and computer science. Mabe early
proposed approaches are statistical in nature fil@ximum
likelihood [9], imputation by regression [14], arekpectation
maximization [11]. These pure and/or simplex stagsmethods,
however, cannot be directly applied for wirelesasse network
data as they do not address the stream data pespdiite
unbounded data volume and one-pass data scardditioa, they
make certain assumptions on the data sets, sudfissng at
Random, that may not exist in sensor data appbicati5].

TinyDB [10] is a popular querying system for wirgdesensor
networks. However, TinyDB does the data estimatfon a
missing sensor by averaging the readings of akrogfensors in
the current round of sensor readings. This approamks well if
all sensors are supposed to report similar valugsitbfails to
incorporate non-linear relationships among sensBezause of
this fact, TinyDB gives erroneous estimation whamplicated
relations exist among sensors or multiple sensoad f
simultaneously. It is very difficult to discover e¢hunderlying
trends and patterns for sensor data properly witlis t
straightforward technique.

Papadimitriou et al [13] proposed an auto regressimdel to
extract correlations and hidden variables amongiphelstreams
by the aid of principal component analysis (PCAned SPIRIT.
This technique can dynamically detect changesr@asts through
a single scan without storing data values. Withah® regression
model, SPIRIT can predict the missing value based the
previous rounds using hidden variables which aseimmary of
the data correlation among all the sensors; buRBP¢ompletely

ignores the reported values in the current rourainfrother
sensors. The accuracy of SPIRIT is restricted lmdiuignores
the relationships among the data in the curremdaf the sensor
readings.

Vijayakumar and Plale proposed a Kalman filter daspproach
for estimating missing data [17]. It uses a dynalimear model
and provides a very accurate prediction of missiaig. However,
this approach is completely based on the histdigrimation. The
data distribution in a data stream changes ovee {8, and in
extreme cases, the history data from the same seriiono

longer be useful to predict the current data vahlleen the
phenomena substantially changed; hence this apprdes
limitations still.

In [5], a missing sensor data estimation algorittetied FARM

was presented where the association rules amonsetisors are
mined and used to estimate the missing data. Estaid the
correlations among the sensors makes FARM achieteerb
accuracy than other popular statistical estimatimethods. In
addition, FARM employs a novel data freshness fraank,

which not only takes the temporal aspect of thea dato

consideration for mining association rules but ataplements a
data compaction scheme to store a large amourtredns data.
The main bottleneck of FARM comes from its limitati on

establishing association rules among the sensbrsstablishes
association rules between two sensors based oredbality
between their readings, i.e., only equivalent refehips are
mined.

Mining Autonomously Spatio-Temporal Environmentalil&s
(MASTER) proposed by Chok and Gruenwald [2] is
comprehensive spatio-temporal association rules ingin
framework which provides both a competitive datéinestion
method and an exploratory tool to investigate tkelwgion of
patterns of the sensor data in a single-hop senstwork.
MASTER is very well equipped to discover any kind o
association rules among the sensors. This frameinatldes a
novel data structure called MASTER-tree which stahe history
data for each sensor and represents the associat#s among
the sensors. An example of an association rule ASVER is
$1[10,20],5,[40,90] — S3[30,40] where S;, S, and S; are

three sensors, arfy andS, are called the antecedent sensors and

Ss is called the consequent sensor of the rule. TtHes implies
when the sensor reading §f is within 10 to 20 and the sensor
reading ofS, is within 40 to 90, the sensor reading 8§ would
be within 30 to 40. Each node in the MASTER-tregresents a
sensor except the root node which represents atyemge; and
each path/sub-path starting from the root nodeessmts an
association rule. Hence a MASTER-tree is capablemfesenting
any kind of relationship among the sensors whichigpate in
the MASTER-tree.

MASTER limits the number of sensors in one MASTE&etby
clustering the sensors into small groups and priadu@n
individual MASTER-tree for each cluster. The adem# of the
clustering step is twofold: 1) the clustering stepanges spatially
co-related sensors into one cluster and 2) it $irtlie number of
sensors in a MASTER-tree which restricts the exptialty large
number of association rules into a more managealmeber. As
each data round arrives, MASTER finds the appropria
MASTER-tree for each sensor and updates the MASTER-
based on the arrived sensor readings. At any péatitcime if a
sensor reading is missing, MASTER finds the appab@r



MASTER-tree for the missing sensor and evaluatesstipport
and confidence of the association rules where tissing sensor
appears as consequent. MASTER finds the best atisocirule
comparing the obtained support and confidence e user
defined minimum support and minimum confidence.alyn it
uses the best association rule and the currenbseeadings of
the antecedent sensors in the best associationorstimate the
consequent sensor’s reading. Interested readersfereed to [2]
for further details.

MASTER was designed for single-hop sensor netwotksuffers
the following deficiencies. The cluster formatistep is solely
based on spatial attributes, which causes poowopesance for
multi-hop sensor network where closely located genare more
likely to be missing together, although it performeellently on
single-hop sensor networks where closely locatedaeare not
likely to be missing together. Moreover, the miitp sensor
networks are usually targeted for complex, largdescand
dynamically changing phenomena where the relatipnamong
the sensors changes over time. The cluster formatiep is used
in MASTER to restrict the search space for assiotiatules;
However in a dynamically changing environment, ttatic
cluster formation step may suffer from not to hake related
sensors in the same cluster; hence the clusterafamm step
should be dynamic and events aware. Neverthelesspiulti-hop
network, a failure of an intermediate sensor camseaa loss of
multiple sensors’ data; therefore if the clustersfixed based on
spatial attributes, there is a chance that alk#resors of a cluster
would be missing together, which will result inethunavailability
of the antecedent sensors to estimate the consesgresor.

Motivated by the drawbacks of MASTER, in this papee

develop a new version of MASTER, called MASTER-My f
multi-hop sensor network applications. MASTER-Mkes use
of a dynamic clustering method that tackles theblemms of

simultaneously missing spatially correlated sensamsl static
location based cluster formation of spatially clated sensors.
Our new clustering approach dynamically adjustscthsters with
the change of the relationships between the sendtwseover

MASTER-M is more robust with respect to the numibudr
simultaneously missing sensors. The details of MBRIM are

presented in the next section.

3. THE PROPOSED MASTER-M

In this section, we first give an overview of MASREM, and
then describe the details of its individual modules

3.1 The MASTER-M Overview

MASTER-M consists of three major modules: onlinestéring,
MASTER-tree projection, and Data estimation. It emkthe
following input: the stream sensor data includmnigsing values,
user-defined maximum number of sensors in eachterluand
user-defined number of rounds at which a phenomeaamge
(event) occurs.

In the clustering module, MASTER-M groups the sessato
some clusters based on our proposed distance dungéscribed
in Section 3.2 to compute the distance betweers¢nsors. Here
the distance measurement is derived in a bootstrggpshion,
i.e., the initial distance value is computed usitige first few
rounds of data, and the consequent distance valugpdated
incrementally., A re-clustering procedure is invibkence the
distance bound in a cluster does not hold any marather
trigger for the re-clustering procedure is the ugefined number

of rounds when a phenomenon change occurs. The MRSTee
projection module computes the MASTER-tree for eelctster.
The MASTER-tree is capable of holding the relatrops among
all the sensors in the cluster. Through the MASTER;
association rules along with their support and iclamfce are
implicitly maintained on the fly when a sensor readarrives.
With the first two modules we keep an effectivestn structure
for sensors, and within a cluster, we maintain gntaddate
MASTER-tree. Then in the final data estimation medthe valid
association rules are derived from the MASTER-t@@roduce
accurate estimation results for the missing sehseaslings. This
estimation procedure is iterative and adjusted nessively: the
nearest known node is used to infer the missingmereading
first; if the error margin from the produced resutheets the
minimum consequent spanning space (MCSS), whicugplied
by the user, then output the estimation resultsgretise more
known nodes according to the path order from theSVIBR-tree
are selected to refine the rules for estimatioe, adding the
antecedent sensors to the rules and cutting doevsehrch space
for the consequent sensor, which is the missing@amde.

We describe the steps in MASTER-M in details in fbiédowing

sections. In Section 3.1, we present our novelnentilustering
technique for MASTER-M. Then in Sections 3.2 an8, 3ve
describe the MASTER-tree projection module and éatamation
module, respectively. These two modules are mainherited
from the original MASTER approach [2]. We brieflyptain the
two modules for the completeness of our approachSIVER-M.

3.2 TheClustering Module

In this section, we describe how the clustering nh@avorks.

3.2.1 Definitions and Preliminaries
At the beginning, we arrange all the sensors adegrtb their
data missing rates in a descending order. The mgssite is
defined as missing rate = number of missing rounds Let
total number of rounds
(51,S2,S3, ...Sy) be the sorted list of sensors after sorting them i
descending order of their missing rates, i.e. &efs misses
least often and sensdh; misses most often. Sensors with the
highest missing rates will be the “seeds” of thestdrs. The
significance of a seed is twofold. For a clusterieghnique,
careful seeding is usually important and helpfyl. [Ror data
estimation, seeds are the most demanding nodémepste most
likely to miss. For each pair of sensafsands;, we compute the
distance between them. There are two types ofrdistbetween
these two nodes: the standard deviation of therdiffces of the
data reading$lspop (S;,S;), and the simultaneously missing rate
dsmr(Si,S;)- dspop(Si,S;) shows the degree that ands; are
related to each other. A relatively smdll,op(S;,S;) implies a
better correlation betwees) andS;. dsyg(S;,S;) shows whether
S; ands; tend to be missing simultaneously; a snagf (S;, S;)
implies a small chance that t§gands; are missing together. So
dspop(Si,S;) and dgyg(S;,S;) both are very important for
deriving association rules betweehy and S; and estimating
missing sensor data. Note that both distances leetwesensor
and itself is always zero i.e.,dgpop(S;,S;) =0 and
dSMR(SirSi) =0.
We further normalizedspop(S;,S;) and dsyr(S;,S;) to be the
values between 0 and 1 and we name thagy,(S;,S;) and
nsmr(Si,Sj) respectively. These two distances form a two




dimensional geometric space for a sensor nagl¢ \Where
nspop (Si, S;) is placed along the x-axis angyg (S;, S;) is placed
along the y-axis. Each data point in the two dinmma space
formed forS; represents a sensor nodg) Where the abscissa is
Nspop(Si,S;) and the ordinate isisy(S;,S;). The origin is
composed of the sensor itself, i.e., the pgh0) represents the
sensor £). The Euclidean distance (

d(Si,S,-)zJnSDOD(Si,Sj)Z+nSMR(SL-,Sj)2) is measured from
the origin to S;. The distance is then characterized as a
measurement of the priority/benefit of puttiigands; into the
same cluster. Now we establish a matrix of distarfoem each
node to all other nodes. Note that the distancatiogiship is
symmetric i.e..d(S;,S;) and d(S;,S;) are the samed(S;,S;) =
d(s;,S;)). Due to the symmetry of the distance function, dee
not need the full matrix. The half matrix is definas M,

3.2.3 Online Cluster Adjustment

In Figure 3 we describe the online cluster adjustnpeocedure.
As each round of sensor readings (or each rounghfort) comes
we compute the distances between the reporteds/afieach pair
of sensors and compute the number of simultaneausging
sensors if there is any sensor missing. We commpsy, (S;, ),
nsmr(Si,S;) and d(S;,S;) (lines 2, 3 and 4) for each pair of
sensorsS; and S; from the rounds arrived since the cluster has
formed. In the next step, for each cluster weeatal the distance
between every two sensors inside a cluster. If distance
between any pair is greater than 1, we identifydimeent cluster
as an obsolete cluster where the standard deviafiaifference
and/or simultaneous missing rate changed subsigntiance we
need re-clustering. The value 1 signifies either ¢brrelation or
the simultaneously missing rate among sensors ioluater
reaches the maximum limit. Concurrently we chedké& number
of rounds reaches a user-defined ceiling as the wee has
domain knowledge may anticipate phenomenon changes
occurring and the need of re-clustering. The reteling is done
by invoking the initial cluster setup algorithmn@i 12). By online
adjustment we maintain the most correlated serinoasseparate
cluster and the sensors that are more likely tmissing together
in other clusters.

0 d(S1,S;) d(S1,53) d(S1,Sn)
0 d(S2,S3) d(S2,Sn)
M= 0 d(S3,Sn)
0
procedure initialClusterSetup
1 construct a sorted list of the sensors accordinghéir

missing rates: DS = {$$, S, ..., S}
2 form a set of clustersCC,, G, ..., G, where G = {S;}

for i=1 to n;

3 loop until no change takes place

4 find the two closest sensors,(S) (without losing any;
generality we can assume i < j);

5 find the cluster Cwhere sensor; $elongs to;

6 find the cluster Owvhere sensor Sj belongs to;

7 if |G| + |Gl < resource constraint (c)

8 merge (¢ G);

9 end if;

10 end loop;

end procedure

Figure2. Thelnitial Clustering Algorithm

3.2.2 The Initial Cluster Structure and Clustering

Algorithm
Figure 2 shows the detailed algorithms for thdahitluster setup.
The initial clustering algorithm starts with sodirthe sensors

procedure onlineClusterAdjustment (each data round)

1 for each pair of sensors; &d $

2 computeispop (S, i)

3 computengy (S, ;)

4 computed(S;, S;)

5 end loop

6 for each cluster

7 if the distance between any two sensors;, d&3 is
greater than 1 or the number of rounds reachesisbe
defined number of rounds at which a phenomenongghan
occurs

8 needReCluster = true;

9 end if;

10 end loop;

11 if needReCluster

12 invoke initialClusterSetup();

13 end if;

end procedure

according to their missing rates (line 1). In thextnstep we setup
a set of clusters where each cluster contains @mtysensor (line
2). In the third step the two nearest sensorsdbatot belong to
the same cluster is identified (line 4) and thespective clusters
are also obtained (lines 5 & 6). Merge the two Eisunless the
sum of their size is greater than the resourcetmins (€) [2]
(lines 7 and 8). Step 3 is repeated until no mengeration can
take place. Finally the algorithm outputs a setlokters where
each cluster contains no more ttmnumber of sensors and two
sensors in the same cluster are less likely to Issing together
and more likely to be correlated.

Figure 3. The Online Cluster Adjustment Algorithm
3.3 The MASTER-tree Projection Module

Providing a feasible data structure for storing amding stream
data is challenging as the volume of stream dataisisally
unbounded, and thus they cannot be completely dstdre to
practical storage restrictions. For stream datacason rules
mining purposes, a compact data structure whichtedd and
represent various kinds of relationships amongatbjeffectively
and efficiently is greatly desired. MASTER-treeaistate-of-the-
art representation of such data structure.

The MASTER-tree is illumined by pattern tree, whietas
proposed to present arbitrary relationships amadhgBaolean
itemsets [4]. A pattern tree can be equivalent $panning tree of



a binary hypercube structure which also catchespa$isible
Boolean item relationships. Pattern tree has a atetipnal
exponential complexity thus is very expensive inme of
computation. So grouping items to a set of cluséerd pruning
the pattern tree or its equivalent hypercube lowéhe
computational complexity substantially. As the patttree favors
one node (the right most leaf node) and extradteekdtionships
to other nodes from that node, it cannot handleatles fairly.
The MASTER-tree is proposed to solve this issueoihbines all
various pattern trees regarding each node and gtheecommon
paths in the resulting tree, then forms a new d¢edled MASTER-
tree [2].

Specifically, in the MASTER-tree data structurectedree node
represents a sensor. The data distribution in ensc node over
a particular vector space is stored in each node domplete
vector space where the sensor readings may falisrdiscretized
into a finite number of cells. For each cell, ahimarily accurate
data distribution function or probability distriliom function can
be represented by an infinite number of momentstatistical

theory. In computational practice, only a finite nmher of

moments plus elements counter are stored in the TWEA&Stree

nodes (a typical configuration is the first four ments). Elements
counter is the number of sensor readings, the vafuehich

belong to the cell associated with the correspandASTER-

tree node. Now for each cell, a few moments anedtand cells
across nodes are linked following the MASTER-trathp. These
cells and links form a grid structure (GS). GS S@s the
compactness requirements as it does not grow aldtig data

rounds because it only depends on the finite nurobeells and
the fixed number of nodes in a cluster. As the dahsaribution

information and elements counter are stored innibhetes of the
MASTER-tree, from that information and following ethpath

(representing the relationships) among the nodeshef tree,
antecedent nodes with a value over specified cedis infer

consequent nodes value distribution, so we canmcléiat

association rules are implicitly stored along th&ASTER-tree

paths between nodes.

The MASTER-tree projection module is to establisMASTER-
tree for each cluster when the initial clusterimggedure or the
re-clustering process happens, then to incremgnipliate GS as
a new round of data comes in. By doing this, thetaigate
association rules between the sensors in a claseeimplicitly
held to serve data analysis purposes.

3.4 TheData Estimation Module

This data estimation module produces the estimaésalt for the
missing sensor (MS). It accomplishes the task iiterative way.
First the module obtains the prior distribution MBS from the
MASTER-tree, i.e., the rule & MS (here g means empty). If the
rule satisfies the user-defined error margin (th€S%) and the
support and confidence thresholds, the rule holdd #he
estimation result is produced by taking the averaigéhe prior
distribution of MS; . If it is not the case, i.éhet error margin
requirement is not satisfied, the related inforomatfrom other
nodes needs to be considered to refine the estimafihe data
estimation module chooses one more new anteceddstto infer
the MS's reading. The initial relevant subspaaettie antecedent
node is simply the cell picked up based on itsenirreading. If
the actual support does not satisfy the minimunpsttghreshold,
the relevant subspace is augmented iterativelyl dm& actual
support is not less than the minimum support. i ihot the case

again, i.e. the support requirement cannot be fatiseven
thought the relevant space reaches its limit, wisdihe complete
subspace, the module takes this node away andhstdttry a
new prior node. The process of adding a new anétedode
repeats until the estimation procedure meets onthede two
cases: (1) a rule satisfying all requirements ash@ved above,
or (2) no more node within the cluster is to be eatido the
antecedent nodes set. The procedure then retuensstimated
value using the last expected value (the averags)tbe obtained
consequent subspace.

4. EXPERIMENTAL DESIGN AND
ANALYSIS

In this section, we compare MASTER-M with two eiigt
algorithms: SPIRIT [13] and TinyDB [10].

4.1 Experimental Dataset
We perform our experiments based on one real-kmsbt and
one synthetic dataset which we describe in the mexsections.

4.1.1 Intel Berkeley Lab Data

This real life application dataset is from the IrBerkeley Lab. It
contains environmental readings collected betwesrliary and
April in 2004 in an indoor setting [7]. The dataseis collected
using a multi-hop sensor network consisting of Shsers
(Mica2Dot). Each sensor detects the temperatutbeofloor. The
number of hops and the network topology for theasett change
dynamically based on TinyDB [10]. The total numioérrounds
collected for all the sensors are approximatelp@8,([7]). Some
random sensors’ readings are missing in every roétttiough
the original dataset contains missing data we damse the
inherent missing data to evaluate the performantethe
algorithms. This is because we do not know theembrvalue of
the missing sensor readings; hence it is impossileéetermine
the accuracy of the algorithms. Therefore we cldahe data in
the first step and implanted the missing valuesaimdom for a
number of consecutive rounds into the cleaned dataSur
cleaning process is iterative. Each round consistssensor
readings from all the sensors. If any of the sesismadings is
missing in a round, we removed the entire roundis Tis
necessary because we process the data round bg. rdurt we
found that very few rounds can be obtained if weagkd round
by round; therefore in the second step we clearestscs by
sensor. If a sensor is missing in more than fifeycpnt of the
rounds we removed that sensor. Removing such arserilsstop
us removing the rounds where only that sensor wiasimg. By
repeating the entire process we ended up withgensors (sensor
ids 41 to 49). We obtained three thousands rourid$ata for
those nine sensors.

4.1.2 Factory Floor Temperature Data

Besides the above real-life application dataset, walso
synthesized a factory floor temperature dataset] [dbich
exhibits dynamically changing phenomena. In thipeskment
machines are placed on a grid floor. In the begig@ill machines
are off and the initial temperature for all gridips is set to zero.
The boundary grid point temperature is held at zBroughout
the experiment. Some machines will be turned orafoumber of
rounds; the temperatures on those machines witthrea high
constant temperature and heat will disperse offldloe. For each
time step, at any non-boundary grid pofiytj), the temperature
T(i,j) is updated using the following formula [3]:



T(@,j) €T3, j) + alpha*[TA+1,))+T@GE—-1,j)—2*

T(i,j) + betax[T(i,j+1)+T(@i,j—1)—2+T(,j)] where
alpha and beta are 0.25 and are thdispersion factes in thex
andy directions respectively. In this simulation, we simulated
scenario in which we sampled the sensor readings per hour
In total we gathered 4500 rounds of readings f24 sensors. It is
equal to a six month period, much longer than theatibn in
which the Intel Berkeley Lab dataset was collectEdr this
dataset, the machines’ on and off status refleles therma
phenomena changes. Machines were placed at difflocations
and they were turned on randomly. As a set of nmashiurnec
on, the heat transfer started from the tu-on machines to the
boundary and the transfer process took place iniffereht
direction. So the relationship among the differdatatiors
changed overtime; hence this dataset reflects thengmen:
change, a property of many applications in r-hop sensor
networks.

4.2 Performance Comparison Studies

In this section we compare the performances of MBR-M,
SPIRIT [13], and TinyDB [10] in ters1of mean absolute error
(MAE). MAE is calculated using the following formu MAE =

n = . . . ..
Zimlevil \yheree, is the estimated value arv; is the original

n
value for the i-th data point). ®specifically study the impacts
the number of roundsfosensor readings on the estimat
accuracy.

4.2.1 Results for the Intel Berkeley Lab Dat:

The results (Figure 43how that when the number of rounds
sensor readings is large, i.e. the amount of dakd un the
estimation process is large; MASTHR-perfcrms much better
than the other two algorithms althouiglis not the best or when

the number of rounds is small. MASTBR-shows a very stable
performance over time, whitbe other two methods perform ve
well at the beginning but deterioratesver time. The data
distribution changes and different sensor readirgyg differently

over time hence the estimation accuracy for TinyDB and $P!

drops. The stable performance of MAST-M over time implies
that MASTER-M is not vulnerable ta@oncept drift. As ai

approach applied on data streartfee long term trend is mo

important than the results obtained the beginning sta;, and

MASTER-M shows its advantages.

Tablel. Relativeaverage error compared to MASTER-M for
theIntel Berkeley dataset

Approach Average Error Relative average
MAE percentag errol
MASTER-M 111 1.71% Best Approac
TinyDB 2.70 4.17% 58.89%
SPIRIT 2.20 3.39% 49.55%

Figure 5is a further illustration of how MASTE-M improves the
estimation accuracy. Figuredemonstrates the relative error

TinyDB and SPIRIT compared to MASTI-M. The relative error
for TinyDB is computed as 100 x (MARps — MAEyasTer-

m)/MAEin0s, Where MAEinps and MAEyasterm are MAE
computed for TinyDB and MASTER4; similarly we compute
the relative error for SPIRIT. At the beginning BPI shows &
negative relative error which means at the begmr8PIRIT
performs better than MASTERE but over time, the error fc
SPIRIT increases; while MASTERF shows an aliost constant
error rate. Table shows the average MAE for all the thi
approaches, average percentage of exnar the relative averag

error for TinyDB and SPIRIT compared to MAST-M.
According to Table IMASTER-M has 58.89% less error than

TinyDB and49.55% less errohan SPIRIT.
Murnber of rounds vs. MAE
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Figure4. MAE vs. multiple number of roundsfor Intel
Berkeley Lab dataset
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Figure5. Relativeerror of TinyDB and SPIRIT compared to

MASTER-M for theIntel Berkeley dataset

-500

Eelative error compare to MASTER-M

4.2.2 Results for thé&actory Floor Temperatur
Dataset

Figure 6shows the MAE with respect to the number of roL
using the synthetic dataset. MAST-M shows a constant
performance over time even though the dataset des
phenomena changeBuring the 4,500 rounds time period,
phenomena change many times, arach time MASTER-M
correctly putsthe related set of sensors into the same clu
therefore, MASTERM produces more meaningful associat
rules and hence better estiina accuracy TinyDB and SPIRIT
show a poor performance because they are not @jof
estimating missing sensor readings wtthe sensor readings
change randomly and there exist different relatiggssamong th
sensors at different points of tir
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Figure6. MAE vs. multiple number of roundsfor the
synthetic dataset



Figure 7 shows the relative error for TinyDB and SPIF
compared to MASTERM for the synthetic dataset. MASTEM
performs much better than the other two methodsicéethe
relative error is very large for both TinyDB and IRH.
MASTER-M has approximately 90% lesserage relative err
than TinyDB and SPIRIT. Table 8ows the average M/
average percentage of eraord average relative error for all thi
approaches. On average MASTBR-outperforms other tw
methods significantly.

MNumber of rounds vs. relative error compare to MASTER-M
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Relative error compare to MASTER-M

500 1000 1500 2000 2500 3000 3500 4000 4500
Nurnber of rounds

Figure7. Relative error for TinyDB and SPIRIT compared to
MASTER-M for the synthetic dataset

The next section (Section 5) demonstrates the Hiisi and
supremacy of data estimation using MASTM over re-
transmission of missing sensor data in terms ofrgr
consumption to emphas the significance of data estimation
multi-hop sensor networks.

Table 2. Relative average error compared to MASTER-M for
the synthetic dataset

receive circuitry, respectively; anEmpiser iS the energy
dissipated in amplification circuitry for achievingcceptabl
transmission capability [6]The values used for each of the ab
mentionedparameters are given in Tabl [6].

Table 3. List of constantsfor the energy equation

Etransmit 50 nJ/bit

Ereceive 50 nJ/bit

Eampiifier 100 pJ/bit/rﬁ
k 2000 bit

Approach Average MAE Error Relative
percentag | average error
MASTER-M 3.9C 0.78% Best Approac
SPIRIT 32.2 6.44% 87.88%
TinyDB 67.1 13.42% 94.18%
5. ENERGY CONSUMPTION
EVALUATION

In this section, we study how much energy savindsSWER-M
would produce in comparison to simple-transmission of
missing readings. Heinzelman][froposed a power calculatit
equation (PCE) where the amount of energy useirsinitting ¢
sensor reading is directly proportional to the nembf bits anc
the distance over which they are transmitted. lhsaders ¢
network of n sensors arranged éarly and gives the pow
consumed by the network in transmittingpik data from thenth
sensor to the base station. It also incorporatesttergy used kt
the intermediate hops (sensors between the dafmating senso
and the base station) in redeily and forwarding the data to t
base stationTo have more accurate resulwe use the real
distances among the sensors instead ofteeage distances us
in [6] to calculate energy consumptio@ur modified energy
calculation formula, given by Eqgtian (1), calculates the ener:
consumed K, using the actual distancg)(between the sensol
En = n(Etransmit Xk) + Eamplifierx(rlz"'----'H'nz)xk + (n'
1)X(Ereceive$K) ... oo ... (1) wheren is the number of hop
including the sensor where the data origin through which the
data pass before reaching the base statias the number of bits
transmittedy; is the distance of thi¢h hop;Egansmit@Nd Eeceive are
the amount of energy consumed in running each rménand

We divided our network into s-networks based on the routing
path. The sub-networks consistlinearly arranged sensors so that
each sulmetwork can be considered a linear network as giye
Heinzelman The PCE is now readily applicable to each of
sub-networks.Using Equation (1), we calculate the ene
consumed in transmittinglabit data originating from each of tl

n sensors in an individual s-network. Then, the total energy
consumed by that individual s-network withn sensors, in one
data round of transmission, is given by Equation Ehally, the
summation of the totalnergy consumption by each «network
gives us the total transmission energy cost of #i-hop sensor
network.

n
Total Epower= ) Ei .. ... ... @)
i=1

However, using a simple teansmission of the missing sen:
data instead of MASTERA4, all the sensors, after one
transmission, are in the receiving mode for a [bssire-
transmission request from the base station. For rea-life
dataset [7] as each data round is for 31secs, this impliasttie
possible reransmission requests take placeing this time.
Hence in such a scenario, all the sensors are esieggy in
staying ‘awake’. Here, we assume that thetransmission
requests involve a single tmnsmission of the missing da
Then, the total energyE{y) consumed in this case is gn by
Equation (3) whereis the duration for which a sensor must b
‘awake’ mode for possible -transmission requestsE,, =
n(Etransmit xk) + Eampliﬁerx(r 12+ e .+I’n2)><k + (n'
1)X(EreceiveK) HX(E receiveK) ... ... ... (3) Thus, Equation (:
gives us the tal energy consumed in transmittik bit data
originating from each of thn sensors in an individual sub-
network using a simple rieansmission process. Next, the tc
energy consumption by each of the -networks and the entire
network as a whole isafculated using Equation (2

The difference in total energy consumption in traission wher
using the data estimation algorithms like MASTM (Equation
1) and when using a simple-trensmission (Equation 3) gives us
the amount of energy saved usingASTER-M. From our
experiments, the energy savings amount to 20% whi
significant considering that we fixed the missiregadrate at 209
and limiting to single réransmission of the missing data. Fig8
shows the percentage of energy saved for vs missing data
rates at 120%. Thus, greater the percentage of missing dad
network, greater the energy consumed by the netvilorke-
transmissions, and greater the energy savings peddiby
MASTER-M. This justifies our stated argument for develg
data estimation techniques like MAST-M rather than using
simple re-transmissions.



In summary, our evaluation of energy consumptioowgh that
using MASTERM saves energy by avoiding -transmission.
There is a linear correlation between the percenof missing
data and the percentage of energy savings by MA&M

(Figure 8). MASTERM saves more energy with increas
percentages of missing data. In our energy calonlate did not
consider the subsequent missing sensor readingsaaftingle r-

transmission which will require even more energy tHamdne we
show for a single réransmission. In that case the actual en
savings by MASTERM in real life scenarios is even greater tl
what we showed in Figure 8.

E.

Percentage of missing data vs. percentage of energy saved by MASTER-M
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Figure8: Energy Saved using MASTER-M compared to
singlere-transmission for variable missing data rate per
round from 1-20%

6. CONCLUSION AND ONGOING WORK

In this paper, we have presented an algorithm rifegdites use c
data clustering and association rule mining tonesti the values
of missing sensor data in mulidp sensor networks. We propc
a dynamic clustering algorithm based on the digtdretween twi
sensors. Our novel distance function definition radges th
simultaneous missing problem and phenomenon char the
environment. The novel distance represents theioethips of
the sensor pairs in multiep networks. We performed extens
experiments on both relife and synthetic datasets, which sh
that our algorithm provides better estimation aacyrcomjared
with existing algorithms. The experiments alsowlthat oui
algorithm is able to save energy. We are curreotgsidering
how to extend MASTERM to accommodate mobile sens
networks as mobility introduces new challengesictv
complicate data estimation.
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