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Abstract

In traditional fixed-wired networks, standard protocols
like 2-Phase-Commit are used to guarantee atomicity for
distributed transactions. However, within mobile networks,
a higher probability of failures including node failures,
message loss, and even network partitioning makes the use
of these standard protocols difficult or even impossible. To
use traditional database applications within a mobile sce-
nario, we need an atomic commit protocol that reduces the
chance of infinite blocking. In this paper, we present an
atomic commit protocol called multi coordinator protocol
(MCP) that uses a combination of the traditional 2-Phase-
Commit, 3-Phase-Commit, and consensus protocols for mo-
bile environments. Simulation experiments comparing MCP
with 2PC show how MCP enhances stability for the coordi-
nation process by involving multiple coordinators, and that
the additional time needed for the coordination among mul-
tiple coordinators is still reasonable.

1 Introduction

Applying database technology to a network of mobile
devices involves many new challenges like lost connections,
node failures, and network partitioning. Especially if there
is the need to guarantee atomic transaction commitment,
e.g. in the context of distributed databases, peer-to-peer sys-
tems, and service oriented architectures, the mobile charac-
ter of the network makes it difficult to agree on a commit
decision and provide it to all participating databases.

Although timeout-based solutions have been proposed
(e.g. [7]), timeouts are hard to estimate, especially in a mo-
bile context since transaction execution times and message
delivery times vary. This results in an unnecessarily high
number of aborts if timeouts are too sensitive and in a long
transaction coordination time if timeouts are too long.

Other proposals rely on compensating transactions,
which are used to compensate the effect of already com-
mitted transactions. However, in mobile networks, where
network partitioning makes nodes unreachable but still op-
erational, we cannot assume that the compensating trans-
actions will always reach the desired nodes. Therefore,
and because committed transactions can trigger other opera-
tions on physically different moving nodes that may discon-
nect during protocol execution, it cannot be guaranteed that
compensation for committed transactions is always possi-
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ble. Additionally, not all applications have compensatable
transactions. Therefore, we consider only the case of non-
compensatable transactions in this paper.

To apply distributed database technology in mobile net-
works, we need a non-blocking atomic commit protocol
that not only stabilizes the coordination process, but also
reduces the blocking of participating databases, especially
if the databases are suspected to frequently disconnect from
the network. A complete change of existing database appli-
cations and the underlying transactional concepts is a hard-
working task that is costly and takes time. Therefore, a re-
quirement for our commit protocol is to be still compatible
with 2PC, so existing and reliable concepts can still be used
in mobile environments with an enhanced failure model.

1.1 Contributions

The main contributions of this paper are:

e we present a multiple coordinator atomic commit pro-
tocol for mobile networks that tolerates network parti-
tioning as long as one partition contains a majority of
coordinator votes

o the proposed protocol makes use of controlled failures;
in such cases, a single coordinator is sufficient to com-
plete the coordination

e we develop a mathematical model for the protocol fail-
ure probability and outline important criteria regarding
the chosen number of coordinators

e we prove the correctness of the protocol

e we experimentally evaluate the amount of protocol
overhead and the protocol failure probability.

Beyond our previous paper [2], in this contribution we

e prove protocol safety (correctness) and protocol live-
ness

e compute the protocol blocking probability

e experimentally determine its blocking probability

e experimentally evaluate the protocol performance and
justify practical protocol usability

e give an important criterion for selecting an appropriate
number of used coordinators.

The rest of our paper is organized as follows: Section 2
describes the requirements to MCP, the underlying assump-
tions, and the system architecture. Section 3 presents MCP,
proves correctness, and analyses costs in terms of number of
messages. Section 6 shows the experimental results, while
Section 7 discusses related work. Finally, Section 8 con-
cludes the paper.
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2 Architecture and Requirements

2.1 Requirements for Atomic Commit Protocols

Our atomic commit protocol design shall meet the fol-
lowing requirements. A transaction in our system con-
sists of one or more sub-transactions running on individ-
ual participating databases. All transactions and their sub-
transactions are considered to be non-compensatable.

Our protocol shall proceed correctly and reduce the
blocking of the participating databases in case of network
partitioning. In mobile networks, due to nodes’ mobility
and power limitation, databases and coordinators may fail
or disappear at any time. Therefore, our protocol should be
able to handle these disconnections and come to a one-sided
commit decision, i.e. if one participant votes for abort, the
decision must be abort. In addition, the protocol should pro-
ceed even if some coordinators or participating databases
fail.

One may reasonably expect that the idea of using mul-
tiple coordinators [13] will reduce blocking. For the spe-
cial case of a network partitioning where each partition con-
tains at most half of all coordinators, [16] have shown that
no non-blocking atomic commit protocol for asynchronous
networks exists. However, in all other cases of network par-
titioning, we want to reduce blocking to a minimum extent.

In situations where it is possible to totally exclude net-
work partitioning or to detect that no partitioning has oc-
curred, our protocol should even be non-blocking as long as
at least one coordinator still works.

2.2 Underlying Assumptions

If a database DB; is unreachable or totally fails after it
has sent its commit vote for a sub-transaction, we do not
count this as a violation of the atomicity constraint. After
the total failure of DB;, it does not matter whether or not the
database has executed the corresponding sub-transaction
since it will not be available anymore. However, if DB; re-
connects to the network or recovers, DB; must first commit
or abort its sub-transaction, depending on the commit deci-
sion of the global transaction in which the sub-transaction
participated, before DB; is allowed to execute other trans-
actions.

When a node detects that it is not able to complete its
sub-transaction (e.g. due to a loss of power) or is going to
disconnect from the network soon, the node tries to inform
other nodes about this imminent failure. If it can inform at
least one of the non-failing participants before the failure
occurs, we call this a controlled failure.

We assume that the probability that a node will be able
to complete the commit coordination of a given transaction
is greater than the probability that it will fail or disconnect
before a commit decision is made.

2.3 Architecture

We assume that in our ad-hoc network, we can iden-
tify some nodes that are likely more stable than others and
closely connected to each other. To enhance availability of
the coordination process, we use these nodes as a cluster of
coordinators.. To do so and in contrast to traditional 2PC,
we split the roles of the participants in such a way that we
allow the initiator, the databases, and the coordinators run-

ning on different machines. Whenever an application starts
a transaction involving more than one database, the node
on which the application started the transaction becomes
the Initiator which then sends the sub-transactions of the
transaction to the corresponding databases and starts MCP,
which runs on a group of n coordinator nodes that handle
transaction commitment. Each coordinator in this cluster of
coordinators is responsible for managing commit decisions
for one or more databases. In the cluster of coordinators,
there is one selected coordinator called the main coordina-
tor, which makes global commitment for all coordinators in
the cluster.

The databases’ communication with a coordinator of this
cluster of coordinators is similar to 2PC: Each participating
database sends its vote for the transaction to a coordina-
tor and receives the commit decision from this coordina-
tor. However, the database might also ask other coordina-
tors about the commit decision if some coordinators have
failed.

After a certain time, the coordinators forward their col-
lected votes to the main coordinator, which then makes the
global commitment decision and spreads this decision to all
coordinators using 3PC.

3 Multiple Coordinator Protocol

Our solution is based on the idea that the protocol failure
probability may decrease when using multiple coordinators.
To show this benefit, we use a failure model that is based on
the coordinator failure probability p, indicating the proba-
bility of a single coordinator failure or disconnection during
the coordination of one coordinated transaction. This sin-
gular failure probability applies to each coordinator node
whenever we use a set of identical participants like sensor
nodes or robot devices.

In order to guarantee the correctness of our solution in
asynchronous networks, we need a majority, i.e. more than
50% of all coordinators in one partition, since we cannot
determine whether participants have failed or moved to an-
other partition (cf. [16]).

Since the protocol will not continue working if 50% or
more of n previously selected coordinators have failed, we
show that the availability of the protocol increases when us-
ing an odd number of 3 or more coordinators, each having
a failure probability p with p < 0.5.

The protocol availability of MCP with n coordinators
in environments where network partitioning can occur, i.e.
the probability that a majority of the n coordinators is still
working, is:

|4n—0.5]

protAvail = (Z)-pk-(l—p)"k
k=0

while the protocol blocking probability is:
protBlocking = 1—protAvail.

[11] showed that for failure probabilities p > 0.5 a sin-
gle coordinator is more stable than using quorum based ap-
proaches. However, even with p < 0.5, the protocol avail-
ability when using multiple coordinators can be worse than
when using a single coordinator, e.g. for n = 10 coordina-
tors and p = 0.47, we get: protAvail = 0.45262.
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Figure 1. Calculated protocol failure probabil-
ities for MCP having n coordinators

Figure 1 shows the blocking probability of multiple co-
ordinators and of 2PC, which uses a single coordinator. On
the x-axis, the failure probability of a single coordinator is
shown, and each curve represents the blocking probability
that occurs for MCP using n coordinators. The bold dashed
line represents the blocking probability of a single coordi-
nator which is the same as when using 2PC.

We can see from Figure 1 and the formula, that

1. the protocol availability is better when using an odd
number of n — 1 coordinators than when using an even
number of n coordinators.

2. using an even number of coordinators each of which
has a blocking probability of nearly 0.5 (e.g. 10 co-
ordinators with p = 0.47) results in a worse blocking
probability (i.e. 0.45) than when using a single coordi-
nator (i.e. 0.47)

3. for an odd number of coordinators and p < 0.5, the
blocking probability of MCP is always smaller than
when using 2PC.

The reason for this result is that a cluster CE containing
an even number n of coordinators tolerates as many coordi-
nator failures as a cluster C'O using the odd number n — 1
of coordinators. This means, without tolerating more coor-
dinator failures than CO, CFE adds an additional source of
failure. Therefore, instead of using an even number of co-
ordinators, it is advisable to ignore one possible coordinator
to get an odd number of coordinators, which implies a sig-
nificantly lower blocking probability than that of 2PC. We
therefore let MCP always use an odd number of coordina-
tors.

To employ these multiple coordinators, we select a clus-
ter of coordinators, which consists of nodes preferably in a
single-hop distance to each other. The role of this cluster
of coordinators is to come to a global coordination decision
by using 3PC among coordinators and the main coordina-
tor. For the communication of the databases and the cluster
of coordinators, 2PC can be used. However, in case of a
node failure within the cluster of coordinators, we need a
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Figure 2. Sequence diagram (failure free case)

termination protocol that guarantees a correct coordination
decision.

In cases where we cannot safely determine that the clus-
ter of coordinators is not partitioned or where it seems that
the main coordinator has failed, MCP runs a termination
protocol which uses the ideas of the Paxos Consensus Pro-
tocol [9] to get a consensus decision on the transaction. This
is described in Section 3.2. If we observe that network parti-
tioning has not split the cluster of coordinators, the protocol
can proceed without blocking the coordinators even if all
but one of them have failed. In this case, the protocol avail-
ability is far better since only one remaining coordinator is
sufficient.

Another advantage of our new protocol is that the clus-
ter of coordinators is located in an environment with fast
message transfer, e.g. in single-hop distance. This speeds
up message transfer for the overhead caused by 3PC in the
cluster of coordinators.

3.1 Failure Free Case

Since a detailed description of the protocol can be found
in [2], we only describe the main ideas of MCP and concen-
trate on the correctness proof and experimental evaluation.

When there is no node or link failure, our protocol works
as shown in Figure 2.

The protocol initiates execution by sending the sub-
transactions to appropriate participating databases includ-
ing necessary coordination information (e.g. which is the
main coordinator; which are the other coordinators).

Each participating database executes the sub-transaction
until it can decide to vote for commit/abort and sends its
vote to its associated coordinator. After the Initiator has se-
lected the coordinators by different criteria and notified that
they coordinate a transaction 7', each coordinator including
the main coordinator starts a local timer and accepts votes
for a transaction T from the participating databases for a
certain period of time. The timeouts that are used can be
the same timeouts that are used when executing 2PC. When
the time has passed, the coordinators will no longer accept
votes from the participating databases on behalf of the trans-
action. The coordinators then bundle their collected votes
and forward them to the main coordinator.
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When the main coordinator has received all database
votes or a specified period of time has passed, the main co-
ordinator decides for commit of 7" if he received a commit
vote from each database, and for abort otherwise. This deci-
sion is sent to the coordinators by using a modified version
of 3PC: The main coordinator first sends a “prepare to send
commit decision to databases” message to all coordinators.
Each coordinator acknowledges the arrival of this message
by sending a reply to the main coordinator. However, unlike
3PC, the main coordinator only needs a majority of coordi-
nator acknowledgments to proceed. This means, after more
than 50% of all coordinators have acknowledged the pre-
pare message, the main coordinator sends a “forward com-
mit decision to databases” message to the coordinators.

The coordinators follow this instruction and forward the
commit decision to their associated databases, i.e. they per-
form the second phase of 2PC. The databases then commit
or abort the transaction.

If the decision message is lost or delayed or if the
corresponding coordinator disconnects, then the decision
message does not reach each database. In this case, the
databases themselves can also ask for the global decision.
Finally, when a database has executed or aborted its sub-
transaction, it sends the result to the Initiator.

In summary, from the external point of view, the whole
cluster of coordinators acts as one commit coordinator and
the databases act as the participants in 2PC, while inside
the cluster of coordinators the main coordinator acts as the
commit coordinator and the individual coordinators act as
the participants in a modified version of the 3PC protocol.

3.2 Failure Handling

We explain different possible failures that might occur
during the execution of MCP and how our protocol handles
these failures. A failure does not necessarily mean a com-
plete crash of the participant, failures also include a discon-
nection of nodes from the network.

3.2.1 Controlled Failures

We define a controlled failure of the coordinator C' as fol-
lows:

Definition 3.1: A controlled failure of a coordinator c is
a failure which can be detected in advance (e.g. due to low
battery or machine shutdown) and the coordinator’s commit
status is known to at least one other non-failing coordinator.

In contrast, an uncontrolled failure of a coordinator c is
a failure where the commit status information of c is lost,
i.e. unknown to the non-failing coordinators.

If a coordinator C'; is able to determine a controlled fail-
ure of a different coordinator C'5, any informed coordinator
can take over the vote and the execution state of the failed
coordinator by starting a new, second instance of the coor-
dination process on its own machine. To ensure progress,
the coordinator that took over the instance must inform the
cluster of coordinators about the old and the new address of
the moved coordinator instance.

If a controlled failure occurs, i.e. the coordination pro-
cess can be transferred to another node, this can be treated
as when no failure occurred at all. For the simplification

of our algorithm description, we assume that each coordi-
nator node only executes a single process. This means, if
a controlled failure occurs, we assume that the process is
transferred to a new coordinator node that was not elected
as a coordinator node before.

3.2.2 Coordinator Failure (except main coordinator)

Since MCP still works correctly if more than 50% of all co-
ordinators work within the same network partition, a single
coordinator failure has no influence on the protocol termi-
nation. If 50% or more of the coordinators fail, the main
coordinator does not get a majority and must wait until suf-
ficiently many of the failed coordinators have reconnected.

If a database does not get the decision message from the
coordinator that should have sent the message, the database
selects another coordinator from the cluster of coordinators.
From the databases’ point of view, the databases themselves
are the active components and are asked to find a running
coordinator.

3.2.3 Main Coordinator Failure

Each coordinator is allowed to suspect a main coordinator
of failing. In this case, MCP uses two concepts, version
numbers and quorums, which are also used in the Paxos
Consensus [9] to terminate a transaction even in the case of
a network partitioning where one partition contains a ma-
jority of all coordinators.

Version numbers are used to identify a unique main co-
ordinator each time, while quorums enable a decision to be-
come valid after a majority of coordinators have agreed on
the decision in case of network partitioning.

Whenever a coordinator does not get an expected mes-
sage from the main coordinator after a certain time, this
coordinator is allowed to suspect a main coordinator failure
and take over the main coordinator’s role. We call this coor-
dinator an interim main coordinator. Since every participat-
ing coordinator is allowed to decide that a main coordinator
failure has occurred and to take over the main coordinator’s
role, there may be more than one main coordinator at a time.

To ensure having one interim main coordinator c; that
has a privileged position, each new main coordinator as-
signs itself a version number vg™" which is greater than the
highest version number v of which the coordinator c; has
knowledge. To make sure v2°" is unique, each coordina-

tor has a unique offset value o... The following formula
shows how vgj,w can be calculated in case of n coordinators:
vee” = [v/n] - n + o,;. BEach coordinator may only ac-
knowledge messages of that interim main coordinator hav-
ing the highest version number v of which the coordinator
has knowledge. This assures that if there are two or more in-
terim main coordinators at the same time, we have an order
of version numbers of interim main coordinators.

The new interim main coordinator first needs the last
coordination states of more than 50% of all coordinators
with which the transaction coordination has started. The in-
terim main coordinator then inspects the proposal (commit
or abort) that was proposed by the main coordinator with
the highest version number and from now on proposes this
proposal.

A proposal becomes a valid decision when a majority of
coordinators has received and acknowledged this proposal.
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Lemma 4.1 shows that if a proposal becomes a valid deci-
sion, it is ensured that another new main coordinator will
get to know the latest decision. The reason is that every
new main coordinator must also receive the latest states of
more than 50% of all coordinators and creates a proposal
that adopts the latest proposal. Therefore, a valid decision
cannot be changed anymore even in case of network parti-
tioning.

3.2.4 Network Partitioning

If network partitioning occurs, there can be at most one par-
tition containing more than 50% of all coordinators that the
transaction has started with. This partition continues proto-
col execution as in the case where the nodes that belong to
other partitions have failed.

If at most 50% of all coordinators with which the transac-
tion has started are within the same partition, these coordi-
nators are blocked since any new interim main coordinator
will receive at most 50% of the latest coordination states of
all coordinators. This blocking is proven to be unavoidable,
cf. [16].

4 Proof of Correctness

To prove the correctness of our algorithm, [8] pointed
out that there are two fundamental properties which must
be fulfilled: safety and liveness.

To ascertain safety, nothing wrong or undesirable may
happen. To ascertain liveness, [1] states that the desired
outcome must be reached sometime — in our case the main
coordinator sends a decision that is valid and the coordina-
tors forward the decision to the databases, each of which
executes its sub-transaction.

To prove that these two properties hold, we first point out
that a decision accepted by a majority cannot be changed
anymore:

Lemma 4.1: When a majority of coordinators has ac-
cepted a decision d with version number v from a main co-
ordinator Meyccess, ANy new interim main coordinator Myey
can only propagate the decision dye, = d.

Proof: Any new main coordinator mye, must first query a
majority of coordinators for the latest proposal, before myey
can adopt and propose this proposal itself. We order the
coordinators that get a majority by their version number.
Let Mpextsuccess e the next coordinator after Mgyccess get-
ting a majority and let Myextsuccess have the version number
Unextsuccess- SINCE Mgyccess WAS successful by assumption,
a majority of coordinators know decision d. Therefore, at
least one coordinator ¢, will reply to Myextsuccess DY send-
ing the decision d and the version number v. As no coordi-
nator with a version number between v and Vpextsuccess Ot
a majority, d will be the decision with the highest version
number. Therefore, Mpextsuccess Will adopt and propose d.
The same argumentation holds for all further coordinators
Mpey that get a majority. Since only coordinators that get a
majority can distribute a decision, all further decisions will
be identical to d. (]

Theorem 4.2: Our termination protocol fulfills the prop-
erty of safety.

Proof: According to [1], the safety conditions correspond-
ing to our case which must be fulfilled are:

e Only a proposed value may be chosen. For our proto-
col, this means that only if all databases have voted for
commit, a commit decision can be chosen.

e Exactly one decision must be chosen.

The first condition is fulfilled because the initial main
coordinator will only propose commit if it has received
commit-messages from all databases. Any further main
coordinator can only propose commit if a previous pro-
posal was also commit. However, this can only happen if
it was the initial main coordinator which proposed commit
the first time. Therefore a commit decision implies that all
databases have voted for commit.

The second condition is fulfilled since a valid decision
can only be sent if more than half of the coordinators have
acknowledged a proposal. Lemma 4.1 guarantees that this
decision will not be changed. Therefore, after the execution
of our algorithm, all running coordinators come to the same
decision. (]

If we do not have different time intervals for a delayed
restart of the distributed main coordinator selection algo-
rithm, the following problem could occur: If two main co-
ordinators /7 and I with version numbers v; < v5 act at the
same time, I; will be rejected by coordinators that already
got in contact with /5 due to the greater version number.
If I, restarts its algorithm immediately with a higher ver-
sion number v1, it cancels the algorithm execution of main
coordinator I5. I, however, can start again with a higher
version number and may cancel the algorithm execution of
main coordinator /. This results in a loop.

In order to prevent this kind of loops, we increase the
time a coordinator waits until it restarts its coordination ef-
forts by a previously specified amount.

Theorem 4.3: If no network partitioning lasts forever, our
termination protocol fulfills the property of liveness.

Proof: To ascertain liveness, [10] asserts that the algorithm
must terminate. To violate this criterion, every new main
coordinator must be unsuccesstul. If we have two active
main coordinators at the same time, the coordinator with
the higher version number is not stopped by the coordina-
tor with the lower number. Since every coordinator C' has a
specified increasing time interval to wait before becoming
a the newest interim main coordinator, there exists a num-
ber of rounds for which the corresponding waiting time has
increased such that it is greater than the time that is needed
to make a main coordinator’s proposal valid. Therefore the
algorithm terminates. O

5 Communication Overhead

5.1 Number of messages

We consider the number of messages in the normal case
where a transaction is committed successfully. We assume
that we have d databases and n coordinators, including the
main coordinator. When the Initiator distributes the transac-
tion to the participating databases, the necessary transaction
information (e.g. which is the main coordinator; which are
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Figure 3. Comparison of 2PC, MCP (3 Coordi-
nators) and MCP (7 Coordinators)

the other coordinators) is sent within the same message, i.e.
it does not require an extra message. In the failure free case,
we have, as shown in Figure 2, at most
e d + d messages: Initiator to databases containing the
sub-transaction, plus the reply to the coordinators con-
taining the database’s votes

e n—1 messages sent from n—1 coordinators to the main
coordinator containing a summary of the databases’
votes inside

e 3(n — 1) messages using the 3PC

e d-+d messages: “do Commit” from the coordinators to
the databases, and the reply from the databases to the
Initiator.

Summing up all messages, we have a total of (4d+4(n—
1)) messages. 4(n — 1) messages are sent within the cluster
of coordinators where message transfer is very fast due to
one-hop communication among coordinators. The remain-
ing messages are the costs of the normal 2-Phase-Commit
which is implemented in many database applications.

5.2 Log Accesses

Since databases can use the same interface as within
2PC, the databases must write the same states and infor-
mation into their log.

The coordinators, i.e. the participants of the cluster of
coordinators have to log the final decision to inform the
databases after a failure. However, they are not required
to log every state of the 3PC execution since our protocol
proceeds if more than half of the coordinators are running.
Therefore, if a coordinator fails and returns, the coordinator
can be either passive and acknowledge a running main co-
ordinator, or it starts acting as an interim main coordinator.
However, in both cases, any previous state that was not fi-
nal is outdated. Therefore, we can omit any logging within
the recovery process if no final decision was reached. When
the final decision has been made, this information must be
written to the log.

6 Experimental Results

6.1 Experimental Setting

We compare the stability of MCP with that of 2PC by
simulating the use of both protocols within a mobile net-
work having node disconnections and failures. We simulate

database activity by delaying the transaction vote messages,
and we simulate node disconnections and node failures by
stopping the coordination process.

In order to compare MCP and 2PC, it is not necessary to
simulate database failures for the following reasons. First,
every database failure that occurs before sending the vote
message implies an “abort” decision, which is a valid deci-
sion on the transaction and has no blocking effect on other
databases. Second, database failures occurring after the
vote message has been sent would not violate the atomic-
ity constraint as described in Section 2.2. Therefore, we
have omitted the simulation of these kinds of failures in our
experiments.

Although the handling of node movement is a task of the
routing layer, we simulate those cases where node move-
ment leads to disconnections, since in such cases nodes can-
not coordinate anymore. Any other case of node movement
will only lead to an increased message delivery time and —
depending on the timeout values — to a transaction abort, but
any simple node movement without disconnections will not
result in a protocol failure.

In our simulation, each coordinator runs a random num-
ber generator after it is chosen as coordinator of a trans-
action: the generated random number determines whether
the coordinator fails (with the probability p) and, should it
fail, when it fails (this probability is uniformly distributed
within a maximum time window). This favors a fast pro-
tocol, since the simulated coordinator failure may also oc-
cur after a transaction was successfully coordinated; in such
case the failure has no effect on the fast protocol.

We simulated the coordination of 150 transactions and
measured the number of protocol failures for various single
node failure probabilities p. We assumed that a protocol
failure occurred if the protocol is not able to make a commit
decision and inform the databases and the initiator! about
this decision within a maximum time limit (i.e. 30 seconds).
Additionally, we measured the time from the initialization
of the protocol until the notification of the initiator. The
database activity time for each transaction is equal for 2PC
and MCP.

Within MCP, we used the following timeouts:
MainCoordinatorDecision = 5s — The time,

after which the main coord. makes a commit decision

MainCoordinatorFailureDetection = 10s —
The time, after which the first coordinator may decide
that the main coordinator has failed and take over the
main coordinator’s role.

CoordinatorForward = 3.2s — Indicates the
time, after which each coordinator forwards its
collected databases’ votes.

DatabaseActivity = 0s - 3s — Indicates in
both MCP and 2PC the time that the database uses
for performing the transaction, i.e. the time that a
database waits before sending the vote message

6.2 Protocol Failures

Figure 3 compares the percentage of failed coordinations
for both 2PC and MCP (using 3 and 7 coordinators). On the

1

in our simulation, the initiator never fails since an initiator failure has
no influence on the protocol availability
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x-axis, the single failure probability p of each coordinator
is shown. For example, a single failure probability of 15%
means that each participating coordinator will not finish a
transaction coordination with the probability of 0.15

On the y-axis, the amount of protocol failures is shown.
The amount of 2PC protocol failures does not exactly cor-
respond to the simulated single coordinator failure proba-
bility for the following reason: since each coordinator that
is supposed to fail does not fail immediately but within a
time window, a simulated coordinator failure might also oc-
cur after a fast transaction has been finished, and therefore
this simulated coordinator failure does not lead to a protocol
failure.

It can be seen by the curves indicating the failure prob-
abilities for MCP that using MCP assures a significantly
lower failure rate than 2PC. In addition, we can conclude
that using more coordinators, e.g. 7 coordinators, is es-
pecially appropriate within environments where the single
failure possibility of a device is in the range of 15% to 45%.

6.3 Transaction Duration

Although we have just seen that MCP has fewer pro-
tocol failures than 2PC, Section 5 states that MCP needs
4 - n more messages than 2PC. However, the number of
messages is not the only interesting parameter, e.g., mes-
sages between databases and the cluster of coordinators take
more time than messages within the cluster of coordina-
tors. To show that MCP can be used practically, we need
to measure the amount of time that is required to complete
a transaction. For this reason, we simulated database activ-
ity for each transaction by delaying the vote message, and
we measured how long it took until all databases got the
commit decision. If the commit decision did not reach one
or more databases within a defined time limit (i.e. 30 sec-
onds), we counted this missing coordination decision as a
protocol failure and we set the transaction duration to the
defined time limit.

Figure 4 and Figure 5 consist of bars, each showing
the time (in seconds) that was needed to complete the cor-
responding transaction with a single failure probability of
15%. Bars exceeding 30 seconds indicate a protocol failure
for the corresponding transaction.

The effects of the termination protocol that is used by
MCP can especially be seen in Figure 5. Bars with y-axis
values around 3 seconds show transactions where none or
one coordinator have failed and all vote message have been
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Figure 5. Transaction duration for MCP

sent to the main coordinator. Bars around 5s indicate that
aMainCoordinatorDecision timeout has occurred,
i.e. a coordinator failed before sending the commit vote.

Higher bars occur if the main coordinator or participants
have failed. In this case, the coordinators detect this fail-
ure after the MainCoordinatorFailureDetection
timeout and elect a new main coordinator that completes the
transaction.

When we compare the average transaction coordination
times of 2PC and MCP, we can not only see that the num-
ber of protocol failures of MCP is much lower than that of
2PC, but also that in the cases where no coordinator fails,
the time needed for MCP is slightly greater than that of 2PC,
but shows less jitter. The explanation for this result is that
MCP uses two timeout values: one for the coordinator, the
other for the main coordinator. Since a coordinator forwards
its received database votes only after the time of the coordi-
nator timeout has passed, the main coordinator receives the
vote messages almost at the same time. The single coordi-
nator of 2PC, in contrast, may decide on the transaction’s
commit status after it has received all database votes.

If a coordinator failure occurs, MCP needs to run its ter-
mination protocol, which takes additional time. This ad-
ditional time is caused by the (adjustable) timeout that the
termination protocol must wait before declaring a node as
having failed. However, MCP ensures more successfully
coordinated transactions, in contrast to 2PC, which was fast
but often unsuccessful as can be seen by the number of bars
exceeding 30 seconds.

How much MCP can improve the mean duration time of
a transaction in comparison to 2PC depends on the number
of coordinators used, their failure probability, and how we
weight infinite blocking of non-decided transactions. When
we weight the duration of a non-decided transaction as last-
ing 30 seconds, we can see that the average transaction time
for single failure probabilities of 15% in MCP with 7 coor-
dinators is on average 30% faster than 2PC.

7 Related Work

Atomic commit protocols for mobile networks have to
solve three main problems: message loss, node failure, and
network partitioning.

Under the assumption of message loss, [4] even proved
that a commit decision is not possible within the coordi-
nated attack scenario, in which the commit decision is that
two generals use an unreliable communication channel to
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agree on a time for a common attack. However, our require-
ments do not include a time-limit for the commit decision
unlike the coordinated attack scenario. Therefore, we can
guarantee an atomic execution unless all coordinators fail.

In contrast to our previous work [2], in which the idea of
using a combination of 2PC [4], 3PC [14], and Paxos Con-
sensus [9] was first described, our present paper theoreti-
cally examines the protocol blocking probability and shows
important criteria for a good selection of multiple coordina-
tors (i.e. usage of an odd number of coordinators; usage of
multiple coordinators only if p < 0.5). In addition, we have
verified the applicability of these theoretical results within
practical experiments and have gotten experimental results
not only for the number of protocol failures for different
values of p, but also for the time that is needed by 2PC and
MCP for transaction coordination.

The use of more than one coordinator is also proposed
in [13]. This approach attaches “backup coordinators” that
store an already reached commit decision of a single com-
mit coordinator. However, if the single coordinator fails
before a commit decision is reached, the protocol blocks.
MCEP, in contrast, can detect a main coordinator failure and
allows the coordinators to take over the main coordinator’s
role, which ensures that the protocol continues.

The proposed termination protocol is based on the idea
of quorums, which was introduced in [3] and later applied to
3PC by [15]. However, since the latter protocol is blocking
in case of cascading failures, we additionally use version
numbers, like in Paxos Consensus ( [9] and [12]) or E3PC
[6], for identifying a version number order of commit coor-
dinators. However, we do not follow [9] by using the Paxos
Commit Protocol [5] to get a consensus on the commit
state as this approach does not take advantage of one-hop-
environments and has a significant message overhead when
there are many coordinators. Furthermore, if the coordina-
tors know that there is no network partitioning in the cluster
of coordinators, our protocol is able to be non-blocking even
with only one remaining coordinator (the above mentioned
quorum protocols need at least ( L% f+ 1J ) remaining coor-
dinators, where f denotes the total number of coordinators.
If we cannot exclude or safely detect a network partition-
ing, our protocol also needs (L% f+ 1J) coordinators to be
running in the same network partition to get a commit de-
cision for the transaction. Otherwise, [16] proved that it is
inevitable to wait until the network is connected again.

[7] suggests a different approach, which uses a time-
out based proposal. However, this protocol assumes that
transaction compensation is possible in case of participant
failure. In contrast, we do not rely on this compensation as-
sumption, since in case of network partitioning, this require-
ment cannot be fulfilled if compensation transactions will
not reach devices that remain within different partitions.
Our approach is more general in that it considers all trans-
actions and their sub-transactions to be non-compensatable.

8 Summary and Conclusion

We have shown that traditional atomic commit protocols
for fixed-wired networks are not suitable for mobile ad-hoc
networks due to their blocking behavior in case of node or
link failures, message loss, and network partitioning.

Furthermore, we have shown that using multiple coor-
dinators needs some care and is not always better than us-
ing a single coordinator: First, an odd number of coordina-
tors should be chosen, second, if the single coordinator fail-
ure probability is greater than 0.5, only a single coordinator
should be chosen. However, our experiments have demon-
strated that using multiple coordinators obeying these co-
ordinator selection rules results in a much higher protocol
availability.

Especially for the use in mobile ad-hoc networks, we
have developed MCP, a multiple coordinator atomic com-
mit protocol that takes advantage of special mobile network
structures like one-hop communication. Since MCP’s logic
resides in the cluster of coordinators and databases commu-
nicate with the cluster of coordinators by using 2PC, MCP
can be easily implemented in database systems that already
use 2PC as only slight modifications to 2PC are needed.
We have shown the correctness of our protocol and experi-
mentally evaluated MCP regarding the number of protocol
failures and protocol speed. It turned out that MCP shows
fewer protocol failures than 2PC and is practically usable
regarding the protocol speed.

Therefore, we consider MCP a useful contribution for
transferring fixed wired applications to mobile environ-
ments.
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