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a b s t r a c t

Remotely sensed imagery has become increasingly important in several applications domains, such as

environmental monitoring, change detection, fire risk mapping and land use, to name only a few.

Several advanced image classification techniques have been developed to analyze such imagery and in

particular to improve the accuracy of classifying images in the context of such applications. However,

most of the proposed classifiers remain a black box to users, leaving them with little to no means to

explore and thus further improve the classification process, in particular for misclassified pixel samples.

In this paper, we present the concepts, design and implementation of VDM-RS, a visual data mining

system for classifying remotely sensed images and exploring image classification processes. The system

provides users with two classes of components. First, visual components are offered that are specific to

classifying remotely sensed images and provide traditional interfaces, such as a map view and an error

matrix view. Second, the decision tree classifier view provides users with the functionality to trace and

explore the classification process of individual pixel samples. This feature allows users to inspect how a

sample has been correctly classified using the classifier, but more importantly, it also allows for a

detailed exploration of the steps in which a sample has been misclassified. The integration of these

features into a coherent, user-friendly system not only helps users in getting more insights into the data,

but also to better understand and subsequently improve a classifier for remotely sensed images. We

demonstrate the functionality of the system’s components and their interaction for classifying imagery

using a hyperspectral image dataset.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It has been more than 35 years since the first multispectral
imagery became available from civilian remote-sensing satellites
in the early 1970s. Since then, advancements in remote-sensing
technology and instrumentation have generated huge amounts of
remotely sensed imagery from air- and spaceborne sensors. For
example, NASA’s Landsat 1–5 satellite series has resulted in a 165
TB archive of remotely sensed data over 31 years (Durbha and
King, 2005). In recent years, numerous remote-sensing platforms
for Earth observation with increasing spatial, temporal and
spectral resolutions have been deployed by NASA, NOAA and the
private sector. It has been estimated that remotely sensed imagery
is acquired at the rate of several terabytes per day (Li and
ll rights reserved.

l@yahoo.com (J. Zhang),
Bretschneider, 2007). As an example, NASA Landsat-7 has
produced 269 TB images in four years since it was launched in
1999 (Durbha and King, 2005).

Processing, analyzing, and in particular classifying remotely
sensed imagery has become imperative in many applications
domains, where timely and accurate image classification is
essential to decision making processes. This especially includes
applications in environmental monitoring, such as wildfire
detection and tracking environmental phenomena. The classifica-
tion of remotely sensed images has long attracted the attention of
the remote-sensing community (Lu and Weng, 2007). Over the
past decades, several sophisticated techniques and algorithms
have been developed to improve the classification accuracy for
different types of applications. However, in most of the proposed
approaches, image classifiers remain a black box to users, leaving
them with little to no means to explore, and thus improve the
classification process, particularly for misclassified samples.

In processing remotely sensed images, there are typically a
number of band images (or bands for short) in an image dataset. A
portion of the pixels in the image dataset are manually assigned
class labels to be used as the training and testing samples. A pixel
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sample (or sample for short), thus, consists of a number of values
of the bands and a class label. A classifier accepts a certain number
of training samples and outputs different measurements of
accuracy before applying the classifier to the whole image dataset.
An error matrix (or confusion table), whose elements express the
numbers of sample units assigned to a particular class relative to
the actual class, may provide useful information to understand
the distribution of samples that are correctly or incorrectly
classified. However, to the best of our knowledge, few attempts
have been made to look into why and how each individual sample
is correctly or incorrectly classified in the context of classifying
remotely sensed images. Although a few commercial remote-
sensing processing products (e.g., ENVI from ITT and ERDAS from
Leica GeoSystems) provide visualization functions to display
images, auxiliary data and classification results, they do not offer
the functionality to visualize how an individual sample is
classified by their built-in classifiers. A recent study shows that
despite the considerable innovations in establishing and testing
new classification methods, there has been no demonstrable
improvement in classification performance over the past 15 years
(Wilkinson, 2005). The lack of proper visualization tools that help
exploring the structure of classifiers and in particular the
classification processes of individual samples or groups of samples
to gain better insights of both data and classifiers is likely the
major bottleneck in solving these problems.

In this paper, we present the concepts and realization of a
visual data mining system called VDM-RS we have developed to
demonstrate how visualization techniques can be integrated into
the classification processes of remotely sensed images. The system
helps users trace the classification process of individual samples,
i.e., how a sample is correctly classified according to a specific
classifier. More importantly, it provides users with the function-
ality to explore classification steps that led to a misclassification
of a sample, thus allowing users to test and evaluate local changes
to the classification process and tailor the classifier to a specific
image dataset. The prototype system is built on top of the WEKA
open source data mining package (Witten and Frank, 2000) and
the Prefuse graph visualization package (Jeffrey et al., 2005). It
adopts a Coordinated Multiple Views (CMV) approach to integrate
different visualization components for user interactions.

The rest of the paper is organized as follows. Section 2
discusses related work in the areas of visual data mining and
classification of remotely sensed imagery. Section 3 presents the
VDM-RS system architecture and discusses its components.
Section 4 details the key concepts and implementation details of
the visualization of a decision tree classifier and its coordination
with other components of the VDM-RS system. In Section 5,
experiments demonstrating the functionality of system are
presented. Section 6 summarizes our approach and outlines
future directions.
2. Background

The design of the proposed VDM-RS system is motivated by
techniques in related fields such as exploratory geovisualization,
visual data mining and coordinated multiple views. Exploratory
geovisualization techniques are widely used in exploratory geos-
patial data analysis (Koua et al., 2006; Guo et al., 2006). The
techniques typically apply unsupervised clustering algorithms (e.g.,
self-organizing maps) to generate clusters and then link the
clusters with geographical maps to explore the relationships
between clusters and spatial distributions of the sample images.
While each cluster may be treated as a class, normally these
clusters do not have one-to-one correspondences to the observed
class labels (ground truth or ground reference) of the samples.
Exploratory geovisualization techniques are also often applied to
data managed in Geographical Information System (GIS). The focus
of the systems built on top of a GIS is mainly on exploratory
analysis but not on building classifiers and measuring classification
accuracy in a rigorous manner. Under the framework of integrating
information visualization and geospatial analysis, a number of
works have been reported in visualizing remotely sensed data and
their classification results, such as the ADaM tool (Rushing et al.,
2005), visualizing class clusters in the 3D feature space plot based
on a fuzzy classifier (Lucieer, 2004) and visualizing class distribu-
tions in comparison with the corresponding Gaussian distribution
assumptions for individual band or pairs of bands based on the
Maximum Likelihood Classifier (MLC) (Dai, 2005).

Supervised classification techniques of samples derived from
remotely sensed images share many commonalities with data
mining approaches. Quite a few unconventional classification
algorithms are widely used in classifying remotely sensed imagery
(Lu and Weng, 2007), e.g., decision trees and K-Nearest Neighbor
(KNN). Over the past few years, there has been an increasing
interest in research on visual data mining, e.g., Keim (2002) and
De Oliveira and Levkowitz (2003). Ideally, a visual data mining
system not only should have the capability to visualize both the
data to be classified and the classification results, but also should
provide functions in support of investigating the data mining
processes to help users interact with the classifier. Ankerst (2001)
distinguishes among three categories of visual data mining
approaches: (1) applying visualization techniques independent
of data mining algorithms, (2) using visualization techniques for
data mining results and (3) tightly integrating visualization and
data mining algorithms, so that intermediate steps of a data
mining algorithm can be visualized. Most of the existing works on
visual data mining fall into the first two categories, e.g., Barlow
and Neville (2001) and Schulz et al. (2006). A very few systems
truly support the features suggested for the third category. In
addition, although there are some visual data mining packages for
relational databases, e.g., DEVise from University of Wisconsin-
Madison (Livny et al., 1997), only a very few of them support the
analysis of scientific data such as remotely sensed imagery.

The concept of coordinated multiple views is a powerful
visualization technique. It is used in some exploratory geovisua-
lization and visual data mining packages, such as GeoVista
(Takatsuka and Gahegan, 2002; Gahegan et al., 2002) and
XmdvTool (Rundensteiner et al., 2002). Multiple views provide
the opportunity to visualize different aspects of the dataset being
studied, and the coordination may reveal new relationships in the
data that might remain hidden otherwise (Boukhelifa and
Rodgers, 2003). For example, suppose a view displaying an error
matrix and another view displaying the training samples. If these
two views are coordinated by highlighting all the samples
corresponding to a particular element in the error matrix, i.e.,
the samples of class i that have been incorrectly classified as class
j, one might find that these samples may be spectrally very similar
to the samples of class j. If the sample view is further coordinated
with a decision tree classifier, one even might find that these class
i samples follow similar classification paths as some of the class j

samples that lead to their incorrect classification. One can also
link these samples to a map view to examine the geographical
locations of the samples. If their locations are indeed close to
some class j samples, one might need to check whether there have
been some sampling errors.
3. Architecture and components of the VDM-RS system

The design of VDM-RS aims at providing an integration
framework that tightly couples data mining algorithms with
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Fig. 1. Architecture, view components and coordination flows of VDM-RS. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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visualization techniques for classifying remotely sensed images.
To this end, we identify intermediate results of a data mining
algorithm that are important for users to understand the data
mining process and use state-of-the-art visualization techniques
to visualize such results and processes. Finally, we develop
coordination techniques to link the multiple visualization com-
ponents and provide users with a dynamic and visual environ-
ment for analyzing remotely sensed imagery. The current
implementation of VDM-RS has two main components: the views
and the coordination among views. A snapshot of the prototype
system showing the visual components (views) and their
coordination is presented in Fig. 1.
3.1. Views

VDM-RS includes four views, namely the Map View, the Error

Matrix View, the Sample Table View and the Classifier View. The Map

View displays the spatial locations of the training and testing
samples. The samples are color-coded according to their class
labels. The view provides basic GIS functions, such as zoom in,
zoom out, zoom to full extent and to select samples interactively.
After the underlying classifier is built, the system puts all the
incorrectly classified samples (from both the training and the
testing samples) into a separate layer (the ERROR layer colored in
red in Fig. 1) and brings it to the top of the layer stack for
highlighting purposes. This also gives users an opportunity to
examine the spatial distribution patterns of the incorrectly
classified samples and examine whether there are systematic
errors. Users can interactively select samples from the Map View,
and the samples will be added to the Sample Table View for further
operations (Coordination 1). VDM-RS automatically detects
whether the selected samples are the training or testing samples,
and then puts them into the corresponding components in the
Sample Table View.

The Error Matrix View displays the error matrices (also called
confusion tables) for both training and testing samples. Different
from static error matrices that are output by conventional systems
for image processing, the class labels and the cells in the error
matrices are coordinated with the Map View, the Sample Table View

and the Classifier View. Specifically, the first columns of the
matrices showing the class labels are colored using the same color
table as in the Map View. When a cell of the error matrices is
selected, the samples corresponding to the matrix cell will be
highlighted in the Map View (Coordination 2) and displayed in the
Sample Table View (Coordination 3). A status bar is also provided to
help users keep track of the most recently selected matrix element
by showing the observed class label and the classified class label
as well as the number of samples covered by the element of the
error matrix. When a class label in the first column of the error
matrix is chosen, the classes in the visual components in the
Classifier View (which will be described shortly in this section) will
be highlighted or colored (Coordination 4).

The Sample Table View provides a tabular display of the training
and the testing samples with each row for a sample and each
column for an image band. The table displayed in the view is
sortable in the sense that the samples can be sorted based on the
values of one or more of the table’s columns. Users can further
select all or a subset of the samples in the Sample Table View,
which can be either the training samples or the testing samples,
depending on which component (implemented as a tab page in
the system) is active. When a synchronization action is initiated
from the Sample Table View, the selected samples will be sent to
the classifier and visualized in the Classifier View (Coordination 5),
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Table 1
Summary of coordination characteristics of the four views in VDM-RS.

View Context Focus Type

Map Layer Pixel Single/multiple

Error matrix Table Row/cell Single

Sample table Table Row Single/multiple

DT classifier Tree Node/path Single
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as described below. VDM-RS also allows users to manually change
the band values of samples to form new samples and to test the
sensitivity of the classifier used in the Classifier View, which is
introduced next. The function is very useful to answer ‘‘what-if’’
types of questions.

The Classifier View is the most important component in the
system. There are three major functions provided by this
component. First, the Classifier View visualizes the structure of
the classifier to provide users a general idea of the structure and
complexity of the underlying classifier in the view. VDM-RS
supports typical view operations, such as zoom in/out and pan, to
allow users explore parts of the classifier of interest. Second, the
Classifier View also accepts a sample or a set of samples from the
Sample Table View and visualizes how the individual samples
are being classified. Finally, the Sample Table View coordinates the
visual components representing the summarization or intermedi-
ate results of the underlying classifier with the other views in
VDM-RS for a better understanding of the existing classifier or to
stimulate the formulation of a hypothesis that may potentially
lead to the improvements of the classifier. While we defer the
discussion of classifier-specific operations, such as operations for
nodes and paths in a tree-like classifier, to Section 4, the Classifier

View links the training and testing samples that fall within a
subspace of the whole classification space with both the Sample

Table View (Coordination 6) and the Map View (Coordination 7)
for different representations. VDM-RS currently supports the
Decision Tree (DT) classifier, which is being used in many
applications for classifying remotely sensed imagery (see the next
section for details).

In this study, we use an open source GIS package called JUMP3

as an embedded GIS to implement the Map View. The Error Matrix

View and the Sample Table View are implemented using java swing,
which is included in JDK distributions. Compared to the Map View,
the Error Matrix View and the Sample Table View, implementing a
Classifier View is more difficult. Details of the implementation of
the DT Classifier View are provided in Section 4.
3.2. Coordination

The design of the prototype follows the ‘‘Context+Focus’’
visualization principle, i.e., allowing users to focus on some detail
without losing the context (Herman et al., 2000). In the prototype,
the Map View and the Error Matrix View are the two representa-
tions of the whole sample dataset, one in geographical space and
one in classification space. The Map View can serve as the context
of the samples corresponding to an element in an error matrix.
The Sample Table View serves as the focus of the Map View and the
Error Matrix View, where the detailed information (band values
and class labels) of the selected subset of samples (either from the
Map View or from the Error Matrix View) are displayed. The
samples displayed in the Sample Table View and one or multiple
samples selected from the table can serve as another level of
‘‘Context+Focus’’. The relationship between the selected samples
in the Sample Table View and the classifier in the Classifier View

may be treated as the reverse of ‘‘Context+Focus’’, i.e., from focus
to context. In this case, the trace of the classification process is the
focus while the visual representation of the classifier is the
context. In the context of the DT Classifier View, the view itself can
also be treated as the context of the nodes, paths and sub-trees of
the resulting decision tree displayed in the view. Unlike the Map

View and the Error Matrix View, where samples are mutually
exclusive and collectively exhaustive (in geographical space and
3 Vividsolutions, Unified Mapping Platform (JUMP), http://www.vividsolutions.

com/jump/.
classification space, respectively), the samples associated with the
parent decision tree nodes include all the samples associated with
their child nodes. In addition, in a DT Classifier View, the leaf nodes
are labeled by their classes. Thus, a subset of the classes of
interests can serve as the ‘‘Focus’’ and use the whole decision tree
as the ‘‘Context’’. The ‘‘Focus’’ and ‘‘Context’’ in each of the four
views are listed in Table 1 for comparison purposes. The values of
the ‘‘type’’ column in Table 1 are determined as follows. In the
Error Matrix View, only a single row or matrix element is allowed
to be selected as the focus and coordinated with other views.
Similarly in the DT Classifier View, only a single node can be
chosen. These two views are categorized as ‘‘single’’. In contrast,
the Map View and the Sample Table View allow users to choose one
or multiple units to coordinate with other views.

We would like to point out that while the samples are the basic
units in VDM-RS for the view coordination (as in many other
visualization systems), the coordination at the class level and
between a class in one view and samples in another view (and
vice versa) is unique to VDM-RS. Among the seven coordination
flows shown in Fig. 1, Coordination flows 1, 5, 6 and 7 are at the
sample level and Coordination 4 is at the class level. Coordination
flows 2 and 3 are from class level to sample level while
Coordination 5 is from sample level to class level. In addition,
the total of samples in the off-diagonal elements in the Error

Matrix View and the pixels in the ERROR layer of the Map View are
the two representations of the same subset of the samples. The
diverse presentations of samples and coordination flows make
VDM-RS capable of exploring patterns and correlations between
samples and class labels that are central to remotely sensed image
classification.
4. Realization of the decision tree classifier view

In this section, we first introduce the motivation for and the
design of a DT Classifier View in VDM-RS. We then provide
technical details on the implementation along with a presentation
of the functionality. Finally, we briefly discuss the relationship of
our design and implementation with existing work on decision
tree visualization approaches.

4.1. Motivation and design

Decision tree is a popular type of classifier for classifying
remotely sensed images (Friedl and Brodley, 1997; De Fries and
Chan, 2000; Friedl et al., 2002; de Colstoun and Walthall, 2006)
for a number of reasons. First of all, unlike many other classifiers
(such as the maximum likelihood classifier) that assume samples
in a training dataset to obey a certain distribution, there is no
presumption of the data distribution in DT. Second, since DT
adopts a divide-and-conquer strategy, it is fast in training and
execution. Most importantly, the resulting classification rules are
presented in the form of a tree. Paths from the root to leaf nodes
can easily be transformed into decision rules (such as if a410 and
bo20 then Class 3), which is a suitable representation for human
interpretation and evaluation.

http://www.vividsolutions.com/jump/
http://www.vividsolutions.com/jump/
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The goals of the DT classifier view in VDM-RS are threefold. In
general, they aim at opening the black box of a classifier in
traditional systems for classifying remotely sensed imagery. First,
since a DT classifier partitions the data space into mutually
exclusive and collectively exhaustive subspaces, a sample should
follow a path in the decision tree when being classified. Thus,
the primary goal of the DT Classifier View is to visualize the
classification process of an individual sample as a path from the
root to a leaf node in the decision tree. Second, when a sample is
misclassified, the decision tree node at which the sample might
have been misclassified should be identified. Third, important
information regarding the construction of the decision tree for a
classifier should be visualized properly, and thus should help
users to understand the underlying classification process and
algorithm. The visualization components in the DT Classifier View

should provide capabilities to interact with users and to
coordinate with other views. We next show how these design
goals and objectives are realized in VDM-RS.
4.2. Implementation details

In our approach, we use the J48 implementation of the C4.5
decision tree classifier (Quinlan, 1993) from the WEKA open
source data mining package (Witten and Frank, 2000). Although
WEKA comes with a decision tree visualization component, this
component is primarily designed for visualizing the structure of
the resulting decision tree and its functionality is very limited. To
meet the above design goals, a natural choice is to use a tree/
graph visualization package with sophisticated layout algorithms
to deal with large decision trees. In VDM-RS, we use an open
source Java package called Prefuse (Jeffrey et al., 2005) for this
purpose. There were a few technical issues that needed to be
addressed before mapping the decision tree structure resulting
from the J48 algorithm to the Prefuse tree structure. First,
important key properties of the J48 decision tree classifier are
designed to be non-public but they contain critical information for
users to look into the classifier. Parsing this information through
the summary API that returns limited information of the classifier
as a string, as WEKA’s built-in decision tree visualization
component does, is far beyond the scope of our design objectives.
Second, the resulting J48 decision tree classifier, while it returns a
class label for each given sample, does not provide intermediate
information that helps users understand how the sample is
correctly/incorrectly classified and from which node along the
classification path the sample is incorrectly classified. Third, some
ode Currently Chosen  (Cyan) 

Fig. 2. Visualizing classification path of an individual sample in VDM-RS and identify

references to colour in this figure legend, the reader is referred to the web version of t
of the classification information that is important for users to
understand the classifier does not exist in the native J48 classifier
and needs to be derived.

To overcome these problems, we have developed a wrapper
on top of the WEKA native J48 classifier to interact with Prefuse
tree/graph visualization modules. The wrapper has the same
structure as the resulting J48 decision tree with additional
information fields in its nodes for visualization purposes and
interactions with other views. The wrapper constructs a modified
J48 decision tree classifier that allows it to expose its hierarchy
and node-split models to other modules. A subset of the proper-
ties (e.g., information gain and gain ratio) associated with J48
decision tree nodes is adopted in the wrapper, and another set of
properties that we believe are important to remote-sensing
classification are also added to the wrapper. In particular, the
error matrices for both the training and testing samples are
associated with each node of the wrapper. Both the training and
testing samples are then fed into the resulting J48 classifier to
identify the paths along which the samples are classified. The
identifiers of the samples are recorded in the wrapper and the
error matrices of the leaf nodes in the wrapper are updated during
the process. Finally, the wrapper is mapped to a Prefuse tree
structure for visualization purposes. For memory efficiency
purposes, the error matrices associated with non-leaf nodes in
the wrapper are not stored. Instead, they are computed on the fly
by accumulating the corresponding matrix elements from the
error matrices associated with the leaf nodes under a selected
non-leaf node.

As indicated previously, identifying the split nodes in the
decision tree that lead to an incorrect classification of a sample is
important to open the black box of the decision tree classifier. By
testing whether the true class label of the sample being classified
is in the set of the class labels corresponding to the leaf nodes
under an intermediate decision node, the prototype system is able
to determine from which decision node the sample is being
incorrectly classified. For example, in Fig. 2, the highlighted path
from the root to a leaf node in the decision tree shows how a
sample is classified. Starting from the node b100o ¼ 1834 along
the path, the true class label ‘‘Grass/Trees’’ cannot be found in any
of its leaf nodes under the decision node b100o ¼ 1834. Here
attribute b100 refers to band 100 and 1834 is the pixel value at the
band. Splitting the path and coloring the two segments differently
(in blue and red, respectively) provides users with useful
information about how a sample is incorrectly classified and
starting from which node in the tree the sample is incorrectly
classified.
Search Node for a Class Label (Pink) 

Split-node (Red) of a Classification Path

ing breaching point for an incorrectly classified sample. (For interpretation of the

his article.)
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To help users gain insights into how training samples are
divided into groups while a decision tree is being constructed, the
following three types of information are associated with each
decision tree node. First, the information gain and gain ratio as
well as the error matrices are managed. In the decision tree, the
information gain parameter measures the change of information
entropy before and after partitioning a dataset into two or more
subsets. The gain ratio parameter is the ratio between the
information gain and the information entropy after the partition-
ing. These two values indicate how well the chosen partitioning
attribute and its partitioning value are in separating the training
samples. By comparing the error matrices associated with the
node and the global error matrices in the Error Matrices View,
normally users will recognize that the partitioned subspaces
represented by the decision tree nodes are gradually specialized in
distinguishing certain classes. If a small number of elements in an
error matrix for a decision tree node are diagonally concentrated,
compared to the global error matrix for either training or testing,
it indicates that the subspace represented by the tree node is good
in separating the classes from the rest.

Second, the information gains and gain ratios for all attributes
of the nodes along the path from the root to a chosen node are
managed. Note that the values are computed using the training
samples associated with the respective nodes along the path. The
reason for exposing this information to users is to help them
understand how the partitioning attributes are chosen and
whether there are good alternatives in choosing the partitioning
attributes. This is better illustrated in Fig. 3. In this particular
example, by sorting the ‘‘Full’’ column in Fig. 3(a), we can see that
attribute b115 has the largest gain ratio value (before/) with the
corresponding information gain (after/) greater than the average
of all the attributes, and therefore b115 is chosen as the
partitioning attribute (the partitioning value is 1287). Similarly,
in Fig. 3(b), by sorting the ‘‘b11541287’’ column, one can see that
band b200 has the largest gain ratio value (0.8969), and it is
selected as the partitioning attribute. On the other hand, users
may see that the two neighboring bands, b114 and b201 in the
two cases, have gain ratios and information gains similar to those
of the bands b115 and b200 and they could have been used as the
partitioning attributes. This may indicate that the resulting
decision tree might be non-unique due to redundant attributes
in the dataset. Furthermore, the function may inform users that
(a)

Fig. 3. Viewing and sorting information gain and gain ratio information from root to a se

classifier in VDM-RS. Subpanels: information gains and gain ratios for all the attribute
while b200 is the best attribute in partitioning the dataset
associated with node b11541287 (Fig. 3(b)), it is not the best
attribute for partitioning the whole dataset. The reason is that the
distribution of the samples has been changed significantly after
partitioning.

Finally, the samples associated with a decision tree node are
managed. They can be visualized in other views through inter-
view coordination. To display the samples in text format, VDM-RS
reuses the Sample Table View (i.e., through Coordination 6 in Fig. 1)
and highlights the incorrectly classified samples, so that users can
easily identify these samples and trace their classification paths
through Coordination 5, as illustrated in Fig. 1. Different from the
regular display in the Sample Table View, the attributes (or bands)
of the subset samples are reordered according to their path
sequence from the root to the selected node. These attributes are
followed by the class label attribute and the rest of the attributes
in the dataset. A typical operation that users can perform on the
sample table is to first sort the table based on the class labels of
the samples and then sort it based on the values of attribute of
interest. This way, they can see how the values of one or more
bands differ among classes. Similarly, the samples can be high-
lighted in the Map View (Coordination 7 in Fig. 1).

The search function in the classifier view (at the very bottom of
Fig. 1), which has been used in Coordination 4, plays an important
role in gaining insights into the decision tree classifier. While the
zoom/pan and expand/collapse functions allow users to explore
the structure of a decision tree classifier, when the resulting
decision tree is very large, it is very difficult if not impossible for
users to explore all the nodes/paths of the decision tree at the
same time. Alternatively, users can search for a class label, and the
leaf nodes of the decision tree containing the class label will be
highlighted. If searching a class label results in only a few leaf
nodes, this case suggests that only a few decision rules (each rule
can be derived by concatenating the labels of the nodes along the
path from the root to a leaf node) are needed to cover the majority
of the samples of the class. On the other hand, if a large number of
leaf nodes are returned as the search result, such a case might
suggest that the samples of the class have complex relationships
between spectral values and class labels, and care must be taken
to interpret the resulting decision rules. In addition to searching
for class labels, users can also search for band (attribute) names
and examine their distribution in the decision tree. If a band
(b)

lected node: understanding how partitioning attributes are chosen by decision tree

s using training samples under the root node (a) and node b11541287 (b).
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appears in multiple nodes and is used more frequently than other
bands, this might suggest that the band plays an important role in
classifying the remotely sensed image.
4.3. Discussion

A few studies related to visual aspects of decision trees have
been published, and some of them focus on visual/interactive
constructions of decision trees (Teoh and Ma, 2003; Liu and
Salvendy, 2007). While the current implementation of the DT
Classifier View in VDM-RS focuses on exposing the internal
information of a DT classifier and coordination with other types
of views, we plan to allow users to modify the automatically
constructed decision trees, thus building on the experience from
visual/interactive constructions of decision trees. The techniques
proposed by Song et al. (2004) can be incorporated in VDM-RS to
visualize large decision trees, and thus allow users to focus on
multiple selections while maintaining context. The work most
closely related to ours with respect to visualizing constructed
decision trees is the work reported by Barlow and Neville (2001).
Compared to their approach, in addition to providing more
information at each decision node, the DT Classifier View of
VDM-RS also provides information about the paths from the root
to a decision node of interest (Fig. 3). Furthermore, VDM-RS is
specifically designed for classifying remotely sensed images with
the addition of visual components, such as Map View and Error

Matrix View. In addition, different from all the above work, the
VDM-RS DT classifier view allows users to visually trace the
classification processes for individual samples, an aspect that has
been proven very useful.
5. Experiments

5.1. Data and setup

To test the functionality of VDM-RS, we use a publicly available
hyperspectral image dataset called the Indian Pine dataset (http://
dynamo.ecn.purdue.edu/�biehl/MultiSpec/documentation.html).
The dataset is a segment of one AVIRIS data scene taken at the NW
Indiana’s Indian Pine test site in 1992. The dataset representing
the hyperspectral image has 145�145 pixels and about half of
them have ground truths (class labels). We use nine classes of
samples derived from the image. The nine classes are Corn-notill,
Corn-min, Grass/Pasture, Grass/Trees, Hay-windrowed, Soy-
beans-notill, Soybeans-min, Soybean-clean and Woods and their
Fig. 4. Spatial distributions of all samples (a
sample sizes range from 497 to 2468 pixels with a total of 9345
samples. Following standard practices in classifying remotely
sensed images, we randomly divide the samples into training and
testing datasets. We extract the samples from their binary native
dataset and transform them into the Attribute-Relation File
Format (ARFF), which is supported by WEKA (Witten and Frank,
2000). The dataset or its subset has been used in quite a few
previous studies (Jimenez and Landgrebe, 1999; Melgani and
Bruzzone, 2004; Huang and He, 2005; Wang et al., 2007). While
these studies report different classification accuracies using
different classification algorithms, the causes of the misclassifica-
tions were neither analyzed nor visualized. In this section, we will
demonstrate how VDM-RS can provide useful information that
can help users to understand the samples and the decision tree
classifier better. The number of minimum objects in a leaf tree
node is set to 10 and the resulting decision tree has 126 leaf nodes.
The overall classification accuracy for the testing samples is
73.60%.

5.2. Exploration of classification results

The distribution of the incorrectly classified samples (including
training and testing samples) resulting from the Map View is
shown in Fig. 4(b). For comparison purposes, the distribution of
the samples in the whole dataset is also shown in Fig. 4(a). The
samples are color-coded based on their class labels. From Fig. 4,
one can see that the spatial distribution of the incorrectly
classified samples is uneven. For example, circled regions in
Fig. 4(b) have dense incorrectly classified samples. By comparing
Fig. 4(a) and (b), it is easy to see that this is mostly because
samples are clustered by classes in the dataset and some classes
are more likely to be incorrectly classified. The observation can be
further supported by the error matrices shown in Fig. 5 (resulting
from the Error Matrix View). For example, among the 733 testing
samples of class Corn-notill, 127 were misclassified as Soybeans-
min. Similarly, among the 1227 testing samples of class Soybeans-
min, 129 of them were misclassified as Corn-notill. In contrast,
there were no misclassifications between Corn-notill and Woods
and between Soybeans-min and Woods (Fig. 5(b)).

5.3. Deriving significant decision rules

The paths that lead to the classifications of Grass/Pasture,
Grass/Trees, Woods and Hay-windrowed are shown in Fig. 6. The
leaf nodes corresponding to the four classes are highlighted
(colored in pink) and the paths from the leaf nodes to the root are
) and incorrectly classified samples (b).

http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/documentation.html
http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/documentation.html
http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/documentation.html
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Fig. 6. Discovering significant decision rules from decision tree classifier for samples corresponding to pixel (53, 83) and pixel (52, 84). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Color-coded error matrices for training samples (a) and testing samples (b).
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highlighted (colored in cyan) as well in Fig. 6. From the figure, we
can easily derive the following significant decision rules:
(1)
 B115o ¼ 1287 and b2143091 and b100o ¼ 1834-Grass/
Trees. The rule covers 407 training samples with 28 excep-
tions. The number of training samples for Grass/Trees is
391 (which is the sum of numbers in the corresponding row in
Fig. 5(a)).
(2)
 B11541287 and b200o ¼ 1170 and b10141580-Hay-wind-
rowed. The rule covers 256 samples with 6 exceptions. The
number of training samples for Hay-windrowed is 255.
(3)
 B115o ¼ 1287 and b21o ¼ 3091 and b27o ¼ 2366-Woods.
The rule covers 509 samples with 3 exceptions. The number of
training samples for Woods is 634.
The first and the second rules cover almost all of the samples
with the corresponding classes. Besides the third rule, there are
two additional significant rules for Woods with longer decision
paths:
(1)
 B115o ¼ 1287 and b21o ¼ 3091 and b2742366 and
b12141535-Woods. The rule covers 62 samples with 4
exceptions
(2)
 B115o ¼ 1287 and b21o ¼ 3091 and b2742366 and
b121o ¼ 1535 and b73o ¼ 4647 and b139o ¼ 1432-
Woods. The rule covers 49 samples without exceptions.
(3)
 For Grass/Pasture, the number of training samples is 236. Two
decision rules (rule (6) and rule (7)) can be derived as shown
below. However, the rule that covers more samples has a
longer decision path. The percentage of the samples covered
by the significant decision rules is lower than those of the
above three classes, which might indicate that the class is
more difficult to classify.
(4)
 B115o ¼ 1287 and b2143091 and b10041834 and
b1843779-Grass/Pasture. The rule covers 74 samples with
3 exceptions.
(5)
 B115o ¼ 1287 and b21o ¼ 3091 and b2742366 and
b121o ¼ 1535 and b7344647 and b16o ¼ 3720-Grass/
Pasture. The rule covers 132 samples with 3 exceptions.
While some of the significant decision rules can be derived from
the resulting decision tree for the remaining five classes, they only
cover a small percentage of the training samples of the classes. We
next demonstrate how VDM-RS can help users trace the decision
tree classification process and understand how a sample is
incorrectly classified.
5.4. Tracing classification processes of individual samples

As a demonstrative example, we have selected two neighbor-
ing pixels in the testing samples, pixel (53, 83) and pixel (52, 84).
They both represent soybeans-notill instances, as determined by
the ground truth. However, pixel (53, 83) was correctly classified
(highlighted in green in Fig. 7) while pixel (52, 84) was incorrectly
classified as soybeans-min (colored in red in Fig. 7), following two
classification paths with significant overlaps. The classification
paths and the pixel values of the bands used by the classification
paths of the two samples are shown in Fig. 7. The values of pixel
(52, 84) are given first, where pairs of values are given in the boxes
in Fig. 7. The split point of the incorrectly classified path for pixel
(52, 84) is node b945138. Since the value of pixel (52, 84) at b73
is 4025, it follows the wrong classification path and eventually is
classified as soybeans-min. Even if pixel (52, 84) takes the
b73o ¼ 3983 branch, because its value at b52 is 5247, it will be
classified as soybeans-clean. Furthermore, if pixel (52, 84) takes
b52o5523 branch, it will be classified as corn-notill, because
its value at b15 is 5584, which is greater than the partitioning
value 5533 at b15. Finally, assuming pixel (52, 84) takes the
b15o ¼ 5533 path, it is still incorrectly classified as soybeans-
min, because its value at b206 (1173) is larger than the split value
of the attribute (1172). However, if one assumes a 2%
measurement error, by taking the lower bounds, the new values
will be b73 ¼ 3944.5, b52 ¼ 5142.06, b15 ¼ 5472.32 and
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Fig. 7. Classification paths and band values along the paths for samples corresponding to pixel (53, 83) and pixel (52, 84). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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b15 ¼ 1149.54. The new values of pixel (52, 84) will lead to the
correct classification by following the path of b73o ¼ 3983 and
b52o ¼ 5223 and b15o ¼ 5533 and b206o ¼ 1172. The
visualization as well as the additional what-if test results
suggest that the decision tree classifier is sensitive to possible
measurement errors for pixel (52, 84). With a possible 2%
measurement error, the pixel can be classified as any of the four
classes (soybeans-min, soybeans-notill, coybeans-clean and corn-
notill) under node b20341207. The results also suggest that the
four classes may have subtle differences and that it is difficult to
distinguish them from each other, which can be verified from the
error matrices shown in Fig. 5. The visualization process of the
two samples also suggests that neighboring pixels that belong to
the same class can have quite different band values. For example,
the values of the two pixels are 5364 and 5224 at band 51, 5406
and 5256 at band 48, and 5584 and 5416 at band 15. This may
affect distance-based classifiers (such as KNN) significantly and
further investigations are needed.
6. Discussion and future work

In this paper, we have presented the concepts and realization
of a visual data mining prototype system called VDM-RS for
classifying remotely sensed images. The four views implemented
in the prototype, i.e., the Map View, the Error Matrix View, the
Sample Table View and the Classifier View, allow users to visualize
sample datasets from different perspectives. The coordination
among the views can provide useful information that is otherwise
hidden. We have demonstrated the capabilities of the prototype
system using a publicly available and extensively used hyper-
spectral image dataset.

Tightly coupling data mining algorithms and visualization
techniques to build an integrated visual data mining system for
classifying remotely sensed images provides new potentials for
better understanding datasets and classifiers and to further
improve classification accuracies. However, the advantages do
not come without a price. First, not all classifiers can be easily
visualized, and new visualization techniques are needed for these
classifiers. Second, there is significant coding work to implement
visual components of a classifier and link them with data
visualization components. Third, a visual data mining system
provides much more information to users, and thus requires a
significant amount of user interaction. Compared to existing
black-box type image classification systems, there might be a
learning curve for users to adapt to such a new system.

Remotely sensed data is a special type of multi- or high-
dimensional data. There are some existing techniques to visualize
such data and which may be applicable to remotely sensed data,
for example, the Parallel Coordinate Plot (PCP) (Edsall, 2003)
techniques. We do not include PCP in VDM-RS due to some
negative evaluation results from a previous study (Koua et al.,
2006). However, these results should be carefully re-evaluated in
the remote-sensing classification context before making a definite
conclusion.

VDM-RS currently supports the decision tree-based classifiers
only. We plan to investigate how other classifiers, such as the K-
Nearest Neighbor, Support Vector Machines (SVM) and Maximum
Likelihood Classifier can be integrated into VDM-RS. In addition,
for hyperspectral image data classification, dimensionality reduc-
tion techniques are usually applied before classification. A
research question that arises is why and how dimensionality
reduction techniques affect classification accuracies. We plan to
integrate our previous work on incorporating visualization for
high-dimensional data mining processes (Zhang and Gruenwald,
2006) into VDM-RS to enhance its functionality.
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