
An Optimistic Concurrency Control Algorithm for
Mobile Ad-hoc Network Databases

Zhaowen Xing
School of Computer Science

University of Oklahoma
Norman, OK 73019, USA
zhaowenxing@ou.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73019, USA
ggruenwald@ou.edu

Seokil Song
Department of Computer Engineering

Chungju National University
Chungbuk, 380-702, Republic of

Korea
sisong@cjnu.ac.kr

ABSTRACT
With the rapid growth of database applications, wireless
networking technology and mobile computing devices, there is a
demand for processing mobile transactions in Mobile Ad-hoc
Network (MANET) databases, so that mobile users can access
and manipulate data anytime and anywhere. However, in order to
guarantee timely and correct results for multiple concurrent
transactions, concurrency control (CC) techniques become
critical. Due to the characteristics of MANET databases, existing
CC algorithms cannot work effectively. In this paper, we propose
a CC algorithm called Sequential Order with Dynamic
Adjustment (SODA) for MANET databases. In the design of
SODA, the major characteristics of MANET databases are taken
into consideration. SODA is based on optimistic CC to offer high
concurrency and avoid unbounded blocking time, utilizes the
sequential order of committed transactions to improve response
time, and dynamically adjusts the sequential order of committed
transactions to reduce aborts. The simulation results confirm that
SODA has lower abort rate than other existing techniques.

Categories and Subject Descriptors
H.2.4 [Systems]: Concurrency, Distributed Databases,
Transaction Processing

General Terms
Algorithms, Performance, Experimentation.

Keywords
Mobile transaction processing, Optimistic concurrency control,
Mobile ad-hoc networks.

1. INTRODUCTION
Mobile databases refer to database applications in which users
utilize their mobile devices, such as pocket PCs, smart phones,
and laptops, to manage data while they move. A mobile database
system built on a Mobile Ad-hoc Network (MANET) is called a
MANET database system. In this system, both clients and servers

where the databases are stored and accessed by clients are mobile.
As no fixed infrastructures are required, MANET databases can
be deployed in a short time and end users can access and
manipulate data anytime and anywhere, and thus they become an
attractive solution to handle mission-critical database
applications, such as disaster response and recovery systems [4, 2]
and military operations like battle fields [2]. In these applications,
transactions must be executed not only correctly but also within
their deadlines. To guarantee this, a concurrency control (CC)
technique must be a part of the system.

CC is the activity of preventing transactions from destroying the
consistency of the database while allowing them to run
concurrently, so that the throughput and resource utilization of
database systems are improved and the waiting time of concurrent
transactions is reduced [13]. However, the flexibility and
convenience in a MANET introduces a number of
constraints/characteristics, which impact transaction processing
and are listed below. As a result of these constraints and of the
fact that servers are also mobile, CC techniques for cellular
mobile databases cannot be directly applied in MANET
environments.

• Mobility: When a node roams, its network and physical
location change dynamically, and at the same time, the states
of transactions and accessed data items have to move along
with the node.

• Low bandwidth: Wireless network bandwidth is much lower
than its wired counterpart. For example, the widely used
802.11b wireless card has a maximum data rate of 11 Mbit/s;
however, currently an affordable Gigabit Ethernet card
realizes a maximum data rate of 1000 Mbit/s. Thus, within
the cell of a node, inside neighbors have to share and
compete for the same channel. If someone fails, it may keep
sending requests until timeout. This low bandwidth can
result in communication delays, a high risk of disconnections
and long-lived transactions.

• Multi-hop communication: In a MANET, nodes can
communicate with each other either directly or via other
nodes that function as routers. When communication requires
more hops, more power and bandwidth are consumed, and
more execution time is needed to complete transactions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IDEAS10 2010, August 16-18, Montreal, QC [Canada]
Editor: Bipin C. DESAI
Copyright ©2010 ACM 978-1-60558-900-8/10/08 $10.00

• Limited battery power: Because of the mobility and
portability, clients and servers have severe resource
constraints in terms of capacity of battery. Once a node runs
out of power or has insufficient power to function,
communication fails, disconnections happen, execution of

transactions is prolonged, and some transactions may not be
processed.

• Frequent disconnections: A node is disconnected when it
roams freely and is out of the transmission range of all its
neighbors; or it fails to compete for the channels of popular
neighbors; or its battery runs out; or it runs into some
failures. It is normal for a node to become disconnected in a
MANET because the disconnected nodes may reconnect
after some time. When disconnections happen, more
transactions may be delayed or blocked, and even aborted if
they are real-time and miss their deadlines.

• Long-lived transactions: Due to wireless communication
delay, less processing power, frequent disconnections and
unbounded disconnection time, transactions in MANET
databases tend to be long-lived. When the execution is
prolonged, the probability of conflicts with other executing
transactions becomes higher and, consequently, transactions
are likely blocked if a pessimistic CC method applies, or
aborted if an optimistic CC method is in use.

CC research in MANET databases is still in an early stage. To the
best of our knowledge, only one MANET CC algorithm has been
proposed [3]; however, this algorithm not only relaxes transaction
atomicity and global serializability, but also does not take into
account all the identified characteristics of MANET databases. In
this paper, we propose a CC algorithm called SODA, for mission-
critical MANET databases that require global serializability. In
the design of SODA, all listed characteristics are put into
consideration. Nodes are divided into clusters where each cluster
has one cluster head that is responsible for the processing of all
the nodes in the cluster. SODA elects cluster heads based on their
energy, mobility and workload to build a stable backbone, makes
use of optimistic CC to offer high concurrency, and dynamically
adjusts the sequential order of committed transactions to reduce
transaction aborts.

The rest of this paper is organized as follows. Section 2 provides a
brief review of recently proposed CC techniques for mobile
databases. In Section 3, a model of clustered MANET databases is
described. The details of SODA are presented in Section 4. The
performance of SODA is analyzed in Section 5. Finally,
conclusions and future research are given in Section 6.

2. RELATED WORK
Since cellular mobile networks and MANET have many similar
characteristics, in this section, we review the CC techniques
recently proposed for databases in both networks.

Semantic Serializability Applied to Mobility (SESAMO) [3] was
proposed for MANET databases. SESAMO is based on semantic
serializability, which assumes that databases are disjoint and
updates on a database only depend on the values of data of the
same database; therefore, transaction atomicity and global
serializability can be relaxed. However, in SESAMO, global
transactions still need be serialized at each site using strict 2PL;
while at the same time, each site must maintain the consistency of
its own local database. Look-Ahead Protocol (LAP) was proposed
in [10] to maintain data consistency of broadcast data in mobile
environments. In LAP, update transactions are classified into
either hopeful or hopeless transactions. Hopeless transactions can
not commit before their deadlines, and are aborted as earlier as
possible to save system resources and reduce data locks, while

hopeful transactions can continue to execute their read and write
operations using the 2PL algorithm.

Multi-Version Optimistic Concurrency Control for Nested
Transactions (MVOCC-NT) [11] was proposed to process mobile
real-time nested transactions using multi-versions of data in
mobile broadcast environments. MVOCC-NT adopts the
timestamp interval with dynamic adjustment to avoid unnecessary
aborts. At mobile clients, all active transactions perform
backward pre-validation against transactions committed in the last
broadcast cycle at the fixed server. Read-only transactions can
commit locally if they pass the pre-validation, but surviving
update transactions have to be transferred to the fixed server for
the final validation. Choi et al. [6] proposed 2-Phase Optimistic
Concurrency Control (2POCC) to process mobile transactions in
wireless broadcast environments. Transaction validation is done
in two phases: partial backward validation at mobile clients and
final validation at the fixed server. In both phases, if a transaction
Ti is serialized before transaction Tj then the writes of Ti should
not overwrite the writes of Tj and the writes of Ti should not
affect the reads of Tj.

Except for SESAMO, all the reviewed techniques are designed for
cellular mobile databases that heavily rely on broadcast
techniques and powerful servers that are static; thus, they are not
suitable for MANET databases. SESAMO was proposed for
MANET databases. It relaxes the atomicity and global
serializability of global transactions. However, the MANET
databases for mission-critical applications cannot relax the
atomicity and global serializability because each database
depends on each other due to the organizational structure such
that semantic units cannot be defined. For example, in a disaster
rescue scenario, before sending firefighters to pursue some
actions, the status of their equipments has to be checked, where
the firefighter database table may be stored on one mobile server,
and the equipment database table may be stored on another
mobile server. In a battlefield scene, before a tank fires cannon,
the locations of the soldiers have to be checked to ensure their
safety, where the tank database table is stored on one mobile
server, and the soldiers’ information is located on another mobile
server; also, SESAMO does not consider all the characteristics of
MANET databases described in Section 1.

3. ARCHITECTURE OF MANET
DATABASES
In our MANET database architecture, depending on the
communication strength, computing power and storage size,
mobile nodes are classified into either clients or servers as shown
in Figure 1. On clients, only the query processing modules that
allow them to submit transactions and receive results are installed;
while on servers, the complete database management system is
installed and servers provide transaction processing services.
Servers are further classified into coordinating servers or
participating servers. Coordinating servers are the ones which
receive global transactions, divide them into sub-transactions,
forward these sub-transactions to appropriate participating
servers, and maintain the ACID (Atomicity, Consistency,
Isolation, and Durability) properties of global transactions.
Participating servers are the ones that process sub-transactions
transmitted from coordinating servers, and preserve their ACID

properties. Coordinating and participating servers are not
necessarily physical units, and one server can function as both.

Figure 1. Architecture of a clustered MANET database

The entire database is partitioned into local databases and
distributed at different servers, and there is no caching or
replication technique involved for simplicity. Transactions are
based on the simple flat model, which contains a set of read,
write, insert, and delete operations. However, when operations are
checked for conflicts, insert and delete operations are treated just
as write ones. Any subset of operations of a global transaction
that access the same server is submitted and executed as a single
sub-transaction.

Our system is based on clustered MANETs where mobile nodes
are divided into clusters and each cluster has one cluster head
responsible for the processing within the cluster. We choose this
architecture because of two reasons. First, many MANET
applications in the literature use grouped or clustered
architectures. Examples are disaster response and recovery
systems using hybrid MANETs [4], and mobile telemedicine
systems [14]. Second, because every node is mobile in MANET,
the network topology may change rapidly and unpredictably over
time. According to [5], clustered architectures are proper to keep
the network topology stable as long as possible, so that the
performance of routing and resource relocation protocols is not
compromised.

In order to have a stable network backbone and enable our CC
algorithm to run smoothly, we proposed a robust weighted
clustering algorithm called PMW (Power, Mobility and
Workload) [16] to form and maintain more stable clusters in
MANETs. In PMW, the weight of a node is calculated by three
parameters: remaining power, mobility prediction (to check if a
node moves along with all its one-hop neighbors) and workload
(represented by power decrease rate because nodes with heavier
workload consume more energy). These three metrics are
computed locally, independent of extra devices, and cover the
major causes of re-clustering. In other words, PMW takes
mobility, limited power and frequent disconnections into
consideration.

4. SEQUENTIAL ORDER WITH
DYNAMIC ADJUSTMENT
In this section, we describe our proposed CC algorithm SODA,
which was originally proposed for mobile P2P databases that are

centralized [15]. We first describe how SODA works without a
clustered MANET database involved. Second, we discuss how
SODA works in a clustered MANET database that is actually a
distributed database.

4.1 Description of SODA
Inspired by the dynamic adjustment technique proposed in [9],
and based on the combination of Timestamp ordering (TO), OCC,
and backward validation, we propose an optimistic CC algorithm
called SODA.

Assume that Ti’s (i = 1, …, n) are committed transactions, and T
is a validating/committing transaction. If we simply let the
validation/commit order be the serialization order like traditional
OCC, and if there is a read-write conflict between T and Ti, i.e., T
reads a common data item d before Ti updates d, then T is aborted
because two orders are different. Such aborts should be avoided if
possible.

We need a dynamic order among committed transactions other
than the validation order; that is, in SODA, a Sequential Order
(SO) of committed transactions is maintained as {T1, T2, …, Ti,
..., Tn} (also called a history list, which is ordered from left to
right) and can be dynamically adjusted. The dynamic adjustment
consists of simple and complex cases. In the simple case, the
validating transaction T can be directly inserted into the
maintained sequential order without adjustment, and the final
sequential order will be: {T1, T2, …, low, … T, up, ..., Tn}, such
that T must-be-serialized-after low but before up. On the other
hand, in the complex case, the sequential order must be adjusted
before the insertion of T.

Due to space limitation, the detailed description, algorithm
pseudo code and example for the complex case can be found in
Section 4 of [15].
Example 1 (for the simple case): Let {T1, T2, T3} be the
sequential order of committed transactions, and T be a validating
transaction at a server. The read sets, write sets and the
timestamps are shown in Table 1.

Table 1. Transaction information used in Example 1

 T1 T2 T3 T

Read Set (RS) {x} {y
} {x, y} {x}

Write Set (WS) {z} {x} ∅ {z}

Read Timestamp of Data d
(TS(d)) 5 15 25, 30 18

Timestamp of Write Set (WS_TS) 10 20 +∞

Since WS(T1) ∩ WS(T)≠ ∅ and WS_TS(T) > WS_TS(T1), T
must-be-serialized-after T1 and low = T1. Since WS(T2) ∩ RS(T)
≠ ∅ and WS_TS(T2) > T→TS(x), T must-be-serialized-before T2
and up = T2. Since SO(low) < SO(up), this is the simple case and
T passes the validation test. T is inserted immediately before T2,
and the final sequential order is {T1, T, T2, T3} as shown in Figure
2, where the arrow () in the graph indicates the serialization
order between two transactions such as T1 T2 means that T1
must-be-serialized-before T2.

It receives global transactions from clients and divides them
into sub-transactions, which are sent to appropriate
participating servers based on the global schema.

Figure 2. Validating transaction T in Example 1

4.2 How SODA Works in a Clustered
MANET Database
In order to make SODA work effectively in clustered MANET
databases, the coordinating server functionality is combined in the
cluster head because a cluster head is elected by our PMW
algorithm [15] and is the nearest server with the highest power in
the neighborhood, so that this saves time, limited power and
bandwidth that clients must spend to identify suitable servers to
send their transaction to. Therefore, only two major
functionalities are required: the participating server functionality
and cluster head functionality as shown in Figure 3. Note that one
server can have both the functionalities at the same time.

Figure 3. Transaction flow in a clustered MANET

4.2.1 The participating server functionality:
•

•

•

•

•

•

•

•

•

•

•

•

It runs 2-Phase Commit to request the status of sub-
transactions, and at the same time, requests timestamps of
the read set.
Once it receives all successful messages of a global
transaction and can be in the critical section after
communicating with other cluster heads, it begins to validate
this transaction globally using SODA. After validation, it
sends the validation results to each participating server, and
sends the final results to clients.
When a global transaction commits, it updates its sequential
order by running the algorithm update_sequential_order()
[15], and adds the read set, write set and the timestamp of
both sets.
Once a global transaction commits, it tries to remove
committed transactions (or outgoing nodes in the global
serialization graph), which are not serialized after any
active/committed transaction, from the sequential order of
committed global transactions.
It periodically checks its power level. If the level is below a
predefined threshold, it resigns its cluster head status and
elects a new cluster head in the neighborhood.

5. CORRECTNESS PROOF AND
PERFORMANCE EVALUATION
In this section, we first show the correctness proof and the time
complexity of SODA, and then evaluate its performance by
means of simulation.

5.1 Correctness Proof and Time Complexity
Theorem 1: If S is a schedule produced by SODA, then S is
serializable. The proof can be found in [15].

Theorem 2: The time complexity of SODA is O(p*n2 + n), where
n is the number of committed transactions in the sequential order,
and p is the probability of a committing transaction conflicting
with both transactions low and up and SO(low) ≥ SO(up). The
proof can be found in [15].

It maintains the sequential order of committed sub-
transactions. It receives and processes sub-transactions.
When it receives the request about the status of sub-
transactions, it runs SODA locally based on the local
sequential order of committed transactions.

As most of transactions in MANET are read-only, the value of p
will be very small, and thus, p2 will be even smaller. Therefore,
we can safely claim that SODA mostly runs in the linear time. In
contrast, the complexity of a serialization graph testing algorithm
is always O(n2) [9].

It sends the final result to the requesting cluster head. If a
sub-transaction passes the validation, the timestamp of the
read set is also sent to the cluster head.
If a sub-transaction commits, it rebuilds the local latest
sequential order of committed transactions by running the
algorithm update_sequential_order() [15], and adds the read
set, write set and timestamps of both sets.

5.2 Performance Evaluation
Simulation experiments were conducted to compare the
performance of our proposed SODA with those of SESAMO [3]
and the most widely used CC protocol - Strict 2-Phase Locking
(S2PL). As we discussed earlier, SESAMO is the only CC
proposed for MANET databases, but it relaxes transaction
atomicity and global serializability due to its database
assumptions. Global serializability is guaranteed by S2PL when
S2PL is combined with 2-Phase Commit (2PC) [1].

Once a sub-transaction commits, it tries to remove
committed transactions (or called outgoing nodes in the local
serialization graph), which are not serialized after any
active/committed transaction, from the local sequential order
of committed transactions.

4.2.2 The cluster head functionality:
Our simulation model consists of a transaction generator, a real-
time scheduler that schedules transactions using early deadline
first, participating servers, coordinating servers or cluster heads
for SODA only, and a deadlock manager for SESAMO and S2PL.

It maintains the sequential order of committed global
transactions.

In the SODA model, as shown in Figure 3, a transaction T issued
by a client is distributed to this client’s cluster head; the cluster
head divides a transaction into several sub-transactions, and
transmits them to the appropriate participating servers. Each
participating server processes the sub-transactions locally, and
sends the results back to the cluster head. The cluster head runs
the 2PC, gathers all results from the participating servers and
validates T globally.

The simulation models for SESAMO and S2PL are similar to that
for SODA except for two points: 1) SODA is applied locally and
globally to validate transactions, while in SESAMO, strict 2PL is
applied globally [3] and locally [8], and in S2PL, strict 2PL is run
only locally; and 2) SESAMO and S2PL use coordinating servers
instead of cluster heads.

Our simulation is implemented using the AweSim simulation
language [12]. The simulation experiment consists of 20 servers
and 40 clients [7]. Totally 1000 transactions are generated for
each run, and the results are calculated as averages of multiple
independent runs. Due to space limitation, only abort rate defined
in Equation (1) is presented in this paper. Since in mission-critical
applications, transactions should be executed not only correctly
but also within their deadlines, where deadline = creation time +
(estimated execution time + estimated disconnection time)*slack
factor. In other words, we use real-time transactions to evaluate
the performance. Therefore, in our simulation, a transaction will
be aborted if either it misses its deadline or the system could not
complete it successfully (e.g. when it is aborted by the CC
technique).

%100*
nstransactiogeneratedofnumberTotal

nstransactioabortedofnumberTotal
ratetAbor =

 (1)

Figure 4. Abort rate vs. arrival rate

Figure 4 shows that the abort rates of SODA, SESAMO and S2PL
increase when the transaction arrival rate increases. The abort
rate of SODA is much lower than those of SESAMO and S2PL
when the arrival rate is low. This is mainly because SODA is
optimistic and non-blocking. SESAMO’s abort rate is slightly
lower than S2PL’s. Although SESAMO does not enforce global
serializability, strict 2PL running both locally and globally still
blocks many conflicting transactions. S2PL runs strict 2PL locally
only, but it enforces global serializability using 2PC, so that all
locks of sub-transactions are held until global transactions
commit, which increases the waiting time of conflicting
transactions in S2PL. When the arrival rate is getting larger, the

abort rates of these three algorithms are almost the same. Also it
is easy to see that the abort rate of SODA is getting worse quickly
when the contention of transactions increases.

Figure 5 shows that the abort rates of the three algorithms
increase as the disconnection probability increases. Disconnection
probability 0.5 means that 50% of communications become
disconnected when a mobile node tries to communicate with other
nodes. As we mentioned in Section 1, one of the major
characteristics of MANET is frequent disconnections due to the
mobility and energy limitation of nodes and unreliable wireless
communication between nodes.

Figure 5. Abort rate vs. disconnection probability

As shown in Figure 5, the abort rate of SODA is at least 5% lower
than those of SESMO and S2PL when disconnection probability
is <= 0.5 because SODA uses stable cluster heads as coordinating
servers, is optimistic so that it does not block transactions, and
utilizes the dynamic adjustment of sequential order of committed
transactions to reduce aborts. The abort rate of SESAMO is still
slightly lower than S2PL’s due to the same reason discussed
above, and they are almost the same when the disconnection
probability is 1. Since SESAMO has at least 79% abort rate, this
shows that SESAMO does not address frequent disconnections.

Figure 6. Abort rate vs. percentage of disconnection

probability

Since in a clustered MANET, cluster heads are more stable than
non-cluster head nodes, cluster heads may have less disconnection
probability than non-cluster head nodes. In order to study how

less disconnection probability that cluster heads can have
comparing to non-cluster head nodes, we test the percentage of
disconnection probability that cluster heads can have from 10% to
100%. For example, if the default disconnection probability is 0.5
and cluster heads can have 50% of disconnection probability, then
cluster heads will have only 0.25 chances to get disconnected.
Figure 6 shows that the abort rate of SODA decreases as the
percentage of disconnection probability that cluster heads can
have increases. This is mainly because cluster heads become more
stable when they have fewer disconnections. In other words,
fewer transactions are aborted if more stable nodes are elected as
the cluster heads. However, the abort rates of SESAMO and
S2PL do not change because their designs do not involve cluster
heads.

6. CONCLUSIONS
Many excellent CC techniques have been proposed for cellular
mobile databases; but little research has been done for CC in
MANET databases. In this paper, we proposed a CC algorithm
called SODA for MANET databases. In SODA, all the identified
characteristics of MANET databases are taken into account.
SODA is based on optimistic CC to offer high concurrency and
dynamically adjusts the sequential order of transactions to reduce
transaction abort rate. The simulation experiments showed that
the transaction abort rate incurred by SODA is lower than those
incurred by the existing techniques. As future work, we will
conduct simulation experiments to study other performance
metrics, including the energy consumption by clients and servers
as well as the balance in energy consumption among nodes. We
will also incorporate data replication into our model to improve
the data access time and availability.

7. ACKNOWLEDGMENTS
This material is based upon work supported by (while serving at)
the National Science Foundation (NSF) and the NSF Grant No.
IIS-0312746. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

8. REFERENCES
[1] M. Abdouli, B. Sadeg, L. Amanton and A. M. Alimi. A

System Supporting Nested Transactions in DRTDBSs. In
Proceedings of the 1st International High Performance
Computing and Communications, pp. 888-897, September
2005.

[2] S. P. Alampalayam, and S. Srinivasan. Intrusion Recovery
Framework for Tactical Mobile Ad hoc Networks. The
International Journal of Computer Science and Network
Security, Vol.9, No.9, pp. 1-10, September 2009.

[3] A. Brayner, and F. S. Alencar. A Semantic-serializability
Based Fully-Distributed Concurrency Control Mechanism
for Mobile Multi-database Systems. In Proceedings of the
16th International Workshop on Database and Expert
Systems Applications, pp. 1085-1089, August 2005.

[4] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, B.
Salvatore, G. Vetere, S. Dustdar, L. Juszczyk, A. Manzoor,
and H. Truong. Pervasive Software Environments for

Supporting Disaster Responses. IEEE Internet Computing,
Vol. 12, No. 1, pp. 26-37, January 2008.

[5] M. Chatterjee, S. Das, and D. Turgut. WCA: A Weighted
Clustering Algorithm for Mobile Ad Hoc Networks. Cluster
Computing, Vol. 5, No. 2, pp. 193-204, April 2002.

[6] M. Choi, W. Park and Y. Kim. Two-phase Mobile
Transaction Validation in Wireless Broadcast Environments.
In Proceedings of the 3rd International Conference on
Ubiquitous Information Management and Communication,
pp. 32-38, January 2009.

[7] L. Gruenwald, S. M. Banik, and C. N. Lau. Managing real-
time database transactions in mobile ad-hoc networks.
Distributed and Parallel Databases, Vol. 22, No. 1, pp. 27-
54, August 2007.

[8] M. Holanda, A. Brayner, and S. Fialho. Introducing self-
adaptability into transaction processing. In Proceedings of
the 2008 ACM symposium on Applied Computing, pp. 992-
997, March 2008.

[9] S. Hwang. On Optimistic Methods for Mobile Transactions.
Journal of Information Science and Engineering, Vol. 16,
No. 4, pp. 535-554, July 2000.

[10] K. Lam, C. S. Wong and W. Leung. Using Look-ahead
Protocol for Mobile Data Broadcast. In Proceedings of the
3rd International Conference on Information Technology and
Applications, pp. 342-345, July 2005.

[11] X. Lei, Y. Zhao, S. Chen, and X. Yuan. Scheduling Real-
Time Nested Transactions in Mobile Broadcast
Environments. In Proceedings of the 9th International
Conference for Young Computer Scientists, pp. 1053-1058,
November 2008.

[12] A. Pritsker, and J. O’Reilly. Simulation with Visual SLAM
and AweSim, 2nd edition. New York: John Wiley & Sons,
1999.

[13] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database
Systems Concepts, McGraw-Hill College, 2005.

[14] D. V. Viswacheda, M. S. Arifianto, and L. Barukang.
Architectural Infrastructural Issues of Mobile Ad hoc
Network Communications for Mobile Telemedicine System.
In Proceedings of 4th International Conference on Sciences
of Electronic, Technologies of Information and
Telecommunications, March 2007.

[15] Z. Xing, L. Gruenwald, and K. K. Phang. SODA: an
Algorithm to Guarantee Correctness of Concurrent
Transaction Execution in Mobile P2P Databases. In
Proceedings of the 19th International Conference on
Database and Expert Systems Application Workshop, pp.
337-341, September 2008.

[16] Z. Xing, L. Gruenwald, and K. K. Phang. A Robust
Clustering Algorithm for Mobile Ad-hoc Networks. To
appear in the book “Handbook of Research on Next
Generation Networks and Ubiquitous Computing”, Editor
Samuel Pierre, IGI Global, 2010.

	INTRODUCTION
	RELATED WORK
	ARCHITECTURE OF MANET DATABASES
	SEQUENTIAL ORDER WITH DYNAMIC ADJUSTMENT
	Description of SODA
	How SODA Works in a Clustered MANET Database
	The participating server functionality:
	The cluster head functionality:

	CORRECTNESS PROOF AND PERFORMANCE EVALUATION
	Correctness Proof and Time Complexity
	Performance Evaluation

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

