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ABSTRACT 
With the rapid growth of database applications, wireless 
networking technology and mobile computing devices, there is a 
demand for processing mobile transactions in Mobile Ad-hoc 
Network (MANET) databases, so that mobile users can access 
and manipulate data anytime and anywhere. However, in order to 
guarantee timely and correct results for multiple concurrent 
transactions, concurrency control (CC) techniques become 
critical. Due to the characteristics of MANET databases, existing 
CC algorithms cannot work effectively. In this paper, we propose 
a CC algorithm called Sequential Order with Dynamic 
Adjustment (SODA) for MANET databases. In the design of 
SODA, the major characteristics of MANET databases are taken 
into consideration. SODA is based on optimistic CC to offer high 
concurrency and avoid unbounded blocking time, utilizes the 
sequential order of committed transactions to improve response 
time, and dynamically adjusts the sequential order of committed 
transactions to reduce aborts. The simulation results confirm that 
SODA has lower abort rate than other existing techniques.   

Categories and Subject Descriptors 
H.2.4 [Systems]: Concurrency, Distributed Databases, 
Transaction Processing 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Mobile transaction processing, Optimistic concurrency control, 
Mobile ad-hoc networks. 

1. INTRODUCTION 
Mobile databases refer to database applications in which users 
utilize their mobile devices, such as pocket PCs, smart phones, 
and laptops, to manage data while they move. A mobile database 
system built on a Mobile Ad-hoc Network (MANET) is called a 
MANET database system. In this system, both clients and servers 

where the databases are stored and accessed by clients are mobile. 
As no fixed infrastructures are required, MANET databases can 
be deployed in a short time and end users can access and 
manipulate data anytime and anywhere, and thus they become an 
attractive solution to handle mission-critical database 
applications, such as disaster response and recovery systems [4, 2] 
and military operations like battle fields [2]. In these applications, 
transactions must be executed not only correctly but also within 
their deadlines. To guarantee this, a concurrency control (CC) 
technique must be a part of the system.   

CC is the activity of preventing transactions from destroying the 
consistency of the database while allowing them to run 
concurrently, so that the throughput and resource utilization of 
database systems are improved and the waiting time of concurrent 
transactions is reduced [13]. However, the flexibility and 
convenience in a MANET introduces a number of 
constraints/characteristics, which impact transaction processing 
and are listed below. As a result of these constraints and of the 
fact that servers are also mobile, CC techniques for cellular 
mobile databases cannot be directly applied in MANET 
environments. 

• Mobility: When a node roams, its network and physical 
location change dynamically, and at the same time, the states 
of transactions and accessed data items have to move along 
with the node. 

• Low bandwidth: Wireless network bandwidth is much lower 
than its wired counterpart. For example, the widely used 
802.11b wireless card has a maximum data rate of 11 Mbit/s; 
however, currently an affordable Gigabit Ethernet card 
realizes a maximum data rate of 1000 Mbit/s. Thus, within 
the cell of a node, inside neighbors have to share and 
compete for the same channel. If someone fails, it may keep 
sending requests until timeout. This low bandwidth can 
result in communication delays, a high risk of disconnections 
and long-lived transactions. 

• Multi-hop communication: In a MANET, nodes can 
communicate with each other either directly or via other 
nodes that function as routers. When communication requires 
more hops, more power and bandwidth are consumed, and 
more execution time is needed to complete transactions.  
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• Limited battery power: Because of the mobility and 
portability, clients and servers have severe resource 
constraints in terms of capacity of battery. Once a node runs 
out of power or has insufficient power to function, 
communication fails, disconnections happen, execution of 



transactions is prolonged, and some transactions may not be 
processed. 

• Frequent disconnections: A node is disconnected when it 
roams freely and is out of the transmission range of all its 
neighbors; or it fails to compete for the channels of popular 
neighbors; or its battery runs out; or it runs into some 
failures. It is normal for a node to become disconnected in a 
MANET because the disconnected nodes may reconnect 
after some time. When disconnections happen, more 
transactions may be delayed or blocked, and even aborted if 
they are real-time and miss their deadlines.  

• Long-lived transactions: Due to wireless communication 
delay, less processing power, frequent disconnections and 
unbounded disconnection time, transactions in MANET 
databases tend to be long-lived. When the execution is 
prolonged, the probability of conflicts with other executing 
transactions becomes higher and, consequently, transactions 
are likely blocked if a pessimistic CC method applies, or 
aborted if an optimistic CC method is in use.  

CC research in MANET databases is still in an early stage. To the 
best of our knowledge, only one MANET CC algorithm has been 
proposed [3]; however, this algorithm not only relaxes transaction 
atomicity and global serializability, but also does not take into 
account all the identified characteristics of MANET databases. In 
this paper, we propose a CC algorithm called SODA, for mission-
critical MANET databases that require global serializability. In 
the design of SODA, all listed characteristics are put into 
consideration. Nodes are divided into clusters where each cluster 
has one cluster head that is responsible for the processing of all 
the nodes in the cluster.  SODA elects cluster heads based on their 
energy, mobility and workload to build a stable backbone, makes 
use of optimistic CC to offer high concurrency, and dynamically 
adjusts the sequential order of committed transactions to reduce 
transaction aborts. 

The rest of this paper is organized as follows. Section 2 provides a 
brief review of recently proposed CC techniques for mobile 
databases. In Section 3, a model of clustered MANET databases is 
described. The details of SODA are presented in Section 4. The 
performance of SODA is analyzed in Section 5. Finally, 
conclusions and future research are given in Section 6. 

2. RELATED WORK 
Since cellular mobile networks and MANET have many similar 
characteristics, in this section, we review the CC techniques 
recently proposed for databases in both networks. 

Semantic Serializability Applied to Mobility (SESAMO) [3] was 
proposed for MANET databases. SESAMO is based on semantic 
serializability, which assumes that databases are disjoint and 
updates on a database only depend on the values of data of the 
same database; therefore, transaction atomicity and global 
serializability can be relaxed. However, in SESAMO, global 
transactions still need be serialized at each site using strict 2PL; 
while at the same time, each site must maintain the consistency of 
its own local database. Look-Ahead Protocol (LAP) was proposed 
in [10] to maintain data consistency of broadcast data in mobile 
environments. In LAP, update transactions are classified into 
either hopeful or hopeless transactions.  Hopeless transactions can 
not commit before their deadlines, and are aborted as earlier as 
possible to save system resources and reduce data locks, while 

hopeful transactions can continue to execute their read and write 
operations using the 2PL algorithm. 

Multi-Version Optimistic Concurrency Control for Nested 
Transactions (MVOCC-NT) [11] was proposed to process mobile 
real-time nested transactions using multi-versions of data in 
mobile broadcast environments. MVOCC-NT adopts the 
timestamp interval with dynamic adjustment to avoid unnecessary 
aborts. At mobile clients, all active transactions perform 
backward pre-validation against transactions committed in the last 
broadcast cycle at the fixed server. Read-only transactions can 
commit locally if they pass the pre-validation, but surviving 
update transactions have to be transferred to the fixed server for 
the final validation. Choi et al. [6] proposed 2-Phase Optimistic 
Concurrency Control (2POCC) to process mobile transactions in 
wireless broadcast environments. Transaction validation is done 
in two phases: partial backward validation at mobile clients and 
final validation at the fixed server. In both phases, if a transaction 
Ti is serialized before transaction Tj then the writes of Ti should 
not overwrite the writes of Tj and the writes of Ti should not 
affect the reads of Tj. 

Except for SESAMO, all the reviewed techniques are designed for 
cellular mobile databases that heavily rely on broadcast 
techniques and powerful servers that are static; thus, they are not 
suitable for MANET databases. SESAMO was proposed for 
MANET databases. It relaxes the atomicity and global 
serializability of global transactions. However, the MANET 
databases for mission-critical applications cannot relax the 
atomicity and global serializability because each database 
depends on each other due to the organizational structure such 
that semantic units cannot be defined. For example, in a disaster 
rescue scenario, before sending firefighters to pursue some 
actions, the status of their equipments has to be checked, where 
the firefighter database table may be stored on one mobile server, 
and the equipment database table may be stored on another 
mobile server.   In a battlefield scene, before a tank fires cannon, 
the locations of the soldiers have to be checked to ensure their 
safety, where the tank database table is stored on one mobile 
server, and the soldiers’ information is located on another mobile 
server; also, SESAMO does not consider all the characteristics of 
MANET databases described in Section 1. 

3. ARCHITECTURE OF MANET 
DATABASES 
In our MANET database architecture, depending on the 
communication strength, computing power and storage size, 
mobile nodes are classified into either clients or servers as shown 
in Figure 1. On clients, only the query processing modules that 
allow them to submit transactions and receive results are installed; 
while on servers, the complete database management system is 
installed and servers provide transaction processing services. 
Servers are further classified into coordinating servers or 
participating servers. Coordinating servers are the ones which 
receive global transactions, divide them into sub-transactions, 
forward these sub-transactions to appropriate participating 
servers, and maintain the ACID (Atomicity, Consistency, 
Isolation, and Durability) properties of global transactions. 
Participating servers are the ones that process sub-transactions 
transmitted from coordinating servers, and preserve their ACID 



properties. Coordinating and participating servers are not 
necessarily physical units, and one server can function as both. 

 
Figure 1. Architecture of a clustered MANET database 

The entire database is partitioned into local databases and 
distributed at different servers, and there is no caching or 
replication technique involved for simplicity. Transactions are 
based on the simple flat model, which contains a set of read, 
write, insert, and delete operations. However, when operations are 
checked for conflicts, insert and delete operations are treated just 
as write ones. Any subset of operations of a global transaction 
that access the same server is submitted and executed as a single 
sub-transaction.   

Our system is based on clustered MANETs where mobile nodes 
are divided into clusters and each cluster has one cluster head 
responsible for the processing within the cluster.  We choose this 
architecture because of two reasons. First, many MANET 
applications in the literature use grouped or clustered 
architectures.  Examples are disaster response and recovery 
systems using hybrid MANETs [4], and mobile telemedicine 
systems [14]. Second, because every node is mobile in MANET, 
the network topology may change rapidly and unpredictably over 
time. According to [5], clustered architectures are proper to keep 
the network topology stable as long as possible, so that the 
performance of routing and resource relocation protocols is not 
compromised. 

In order to have a stable network backbone and enable our CC 
algorithm to run smoothly, we proposed a robust weighted 
clustering algorithm called PMW (Power, Mobility and 
Workload) [16] to form and maintain more stable clusters in 
MANETs. In PMW, the weight of a node is calculated by three 
parameters: remaining power, mobility prediction (to check if a 
node moves along with all its one-hop neighbors) and workload 
(represented by power decrease rate because nodes with heavier 
workload consume more energy). These three metrics are 
computed locally, independent of extra devices, and cover the 
major causes of re-clustering. In other words, PMW takes 
mobility, limited power and frequent disconnections into 
consideration. 

4. SEQUENTIAL ORDER WITH 
DYNAMIC ADJUSTMENT 
In this section, we describe our proposed CC algorithm SODA, 
which was originally proposed for mobile P2P databases that are 

centralized [15]. We first describe how SODA works without a 
clustered MANET database involved.  Second, we discuss how 
SODA works in a clustered MANET database that is actually a 
distributed database. 

4.1 Description of SODA 
Inspired by the dynamic adjustment technique proposed in [9], 
and based on the combination of Timestamp ordering (TO), OCC, 
and backward validation, we propose an optimistic CC algorithm 
called SODA.  

Assume that Ti’s (i = 1, …, n) are committed transactions, and T 
is a validating/committing transaction. If we simply let the 
validation/commit order be the serialization order like traditional 
OCC, and if there is a read-write conflict between T and Ti, i.e., T 
reads a common data item d before Ti updates d, then T is aborted 
because two orders are different. Such aborts should be avoided if 
possible. 

We need a dynamic order among committed transactions other 
than the validation order; that is, in SODA, a Sequential Order 
(SO) of committed transactions is maintained as {T1, T2, …, Ti, 
..., Tn} (also called a history list, which is ordered from left to 
right) and can be dynamically adjusted. The dynamic adjustment 
consists of simple and complex cases. In the simple case, the 
validating transaction T can be directly inserted into the 
maintained sequential order without adjustment, and the final 
sequential order will be: {T1, T2, …, low, … T, up, ..., Tn}, such 
that T must-be-serialized-after low but before up. On the other 
hand, in the complex case, the sequential order must be adjusted 
before the insertion of T. 

Due to space limitation, the detailed description, algorithm 
pseudo code and example for the complex case can be found in 
Section 4 of [15].  
Example 1 (for the simple case): Let {T1, T2, T3} be the 
sequential order of committed transactions, and T be a validating 
transaction at a server. The read sets, write sets and the 
timestamps are shown in Table 1. 

Table 1. Transaction information used in Example 1 

 T1 T2 T3 T 

Read Set (RS) {x} {y
} {x, y} {x}

Write Set (WS) {z} {x} ∅ {z}

Read Timestamp of Data d 
(TS(d)) 5 15 25, 30 18 

Timestamp of Write Set (WS_TS) 10 20  +∞

Since WS(T1) ∩ WS(T)≠ ∅ and WS_TS(T) > WS_TS(T1), T 
must-be-serialized-after T1 and low = T1. Since WS(T2) ∩ RS(T) 
≠ ∅ and WS_TS(T2) > T→TS(x), T must-be-serialized-before T2 
and up = T2. Since SO(low) < SO(up), this is the simple case and 
T passes the validation test. T is inserted immediately before T2, 
and the final sequential order is {T1, T, T2, T3} as shown in Figure 
2, where the arrow ( ) in the graph indicates the serialization 
order between two transactions such as T1  T2 means that T1 
must-be-serialized-before T2. 



It receives global transactions from clients and divides them 
into sub-transactions, which are sent to appropriate 
participating servers based on the global schema. 

 
Figure 2. Validating transaction T in Example 1 

4.2 How SODA Works in a Clustered 
MANET Database 
In order to make SODA work effectively in clustered MANET 
databases, the coordinating server functionality is combined in the 
cluster head because a cluster head is elected by our PMW 
algorithm [15] and is the nearest server with the highest power in 
the neighborhood, so that this saves time, limited power and 
bandwidth that clients must spend to identify suitable servers to 
send their transaction to. Therefore, only two major 
functionalities are required: the participating server functionality 
and cluster head functionality as shown in Figure 3. Note that one 
server can have both the functionalities at the same time. 

 
Figure 3. Transaction flow in a clustered MANET 

4.2.1 The participating server functionality: 
• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

It runs 2-Phase Commit to request the status of sub-
transactions, and at the same time, requests timestamps of 
the read set.  
Once it receives all successful messages of a global 
transaction and can be in the critical section after 
communicating with other cluster heads, it begins to validate 
this transaction globally using SODA. After validation, it 
sends the validation results to each participating server, and 
sends the final results to clients.  
When a global transaction commits, it updates its sequential 
order by running the algorithm update_sequential_order() 
[15], and adds the read set, write set and the timestamp of 
both sets. 
Once a global transaction commits, it tries to remove 
committed transactions (or outgoing nodes in the global 
serialization graph), which are not serialized after any 
active/committed transaction, from the sequential order of 
committed global transactions. 
It periodically checks its power level. If the level is below a 
predefined threshold, it resigns its cluster head status and 
elects a new cluster head in the neighborhood. 

5. CORRECTNESS PROOF AND 
PERFORMANCE EVALUATION 
In this section, we first show the correctness proof and the time 
complexity of SODA, and then evaluate its performance by 
means of simulation. 

5.1 Correctness Proof and Time Complexity 
Theorem 1: If S is a schedule produced by SODA, then S is 
serializable. The proof can be found in [15]. 

Theorem 2: The time complexity of SODA is O(p*n2 + n), where 
n is the number of committed transactions in the sequential order, 
and p is the probability of a committing transaction conflicting 
with both transactions low and up and SO(low) ≥ SO(up). The 
proof can be found in [15]. 

It maintains the sequential order of committed sub- 
transactions. It receives and processes sub-transactions. 
When it receives the request about the status of sub-
transactions, it runs SODA locally based on the local 
sequential order of committed transactions.  

As most of transactions in MANET are read-only, the value of p 
will be very small, and thus, p2 will be even smaller. Therefore, 
we can safely claim that SODA mostly runs in the linear time. In 
contrast, the complexity of a serialization graph testing algorithm 
is always O(n2) [9]. 

It sends the final result to the requesting cluster head. If a 
sub-transaction passes the validation, the timestamp of the 
read set is also sent to the cluster head.  
If a sub-transaction commits, it rebuilds the local latest 
sequential order of committed transactions by running the 
algorithm update_sequential_order() [15], and adds the read 
set, write set and timestamps of both sets. 

5.2 Performance Evaluation 
Simulation experiments were conducted to compare the 
performance of our proposed SODA with those of SESAMO [3] 
and the most widely used CC protocol - Strict 2-Phase Locking 
(S2PL). As we discussed earlier, SESAMO is the only CC 
proposed for MANET databases, but it relaxes transaction 
atomicity and global serializability due to its database 
assumptions. Global serializability is guaranteed by S2PL when 
S2PL is combined with 2-Phase Commit (2PC) [1].   

Once a sub-transaction commits, it tries to remove 
committed transactions (or called outgoing nodes in the local 
serialization graph), which are not serialized after any 
active/committed transaction, from the local sequential order 
of committed transactions. 

4.2.2 The cluster head functionality:  
Our simulation model consists of a transaction generator, a real-
time scheduler that schedules transactions using early deadline 
first, participating servers, coordinating servers or cluster heads 
for SODA only, and a deadlock manager for SESAMO and S2PL. 

It maintains the sequential order of committed global 
transactions. 



In the SODA model, as shown in Figure 3, a transaction T issued 
by a client is distributed to this client’s cluster head; the cluster 
head divides a transaction into several sub-transactions, and 
transmits them to the appropriate participating servers.  Each 
participating server processes the sub-transactions locally, and 
sends the results back to the cluster head.  The cluster head runs 
the 2PC, gathers all results from the participating servers and 
validates T globally.  

The simulation models for SESAMO and S2PL are similar to that 
for SODA except for two points: 1) SODA is applied locally and 
globally to validate transactions, while in SESAMO, strict 2PL is 
applied globally [3] and locally [8], and in S2PL, strict 2PL is run 
only locally; and 2) SESAMO and S2PL use coordinating servers 
instead of cluster heads.  

Our simulation is implemented using the AweSim simulation 
language [12]. The simulation experiment consists of 20 servers 
and 40 clients [7]. Totally 1000 transactions are generated for 
each run, and the results are calculated as averages of multiple 
independent runs.  Due to space limitation, only abort rate defined 
in Equation (1) is presented in this paper. Since in mission-critical 
applications, transactions should be executed not only correctly 
but also within their deadlines, where deadline = creation time + 
(estimated execution time + estimated disconnection time)*slack 
factor. In other words, we use real-time transactions to evaluate 
the performance. Therefore, in our simulation, a transaction will 
be aborted if either it misses its deadline or the system could not 
complete it successfully (e.g. when it is aborted by the CC 
technique). 

%100*
nstransactiogeneratedofnumberTotal

nstransactioabortedofnumberTotal
ratetAbor =

    (1) 

 
Figure 4. Abort rate vs. arrival rate 

Figure 4 shows that the abort rates of SODA, SESAMO and S2PL 
increase when the transaction arrival rate increases.  The abort 
rate of SODA is much lower than those of SESAMO and S2PL 
when the arrival rate is low.  This is mainly because SODA is 
optimistic and non-blocking. SESAMO’s abort rate is slightly 
lower than S2PL’s. Although SESAMO does not enforce global 
serializability, strict 2PL running both locally and globally still 
blocks many conflicting transactions. S2PL runs strict 2PL locally 
only, but it enforces  global serializability using 2PC, so that all 
locks of sub-transactions are held until global transactions 
commit, which increases the waiting time of conflicting 
transactions in S2PL.  When the arrival rate is getting larger, the 

abort rates of these three algorithms are almost the same.  Also it 
is easy to see that the abort rate of SODA is getting worse quickly 
when the contention of transactions increases. 

Figure 5 shows that the abort rates of the three algorithms 
increase as the disconnection probability increases. Disconnection 
probability 0.5 means that 50% of communications become 
disconnected when a mobile node tries to communicate with other 
nodes.  As we mentioned in Section 1, one of the major 
characteristics of MANET is frequent disconnections due to the 
mobility and energy limitation of nodes and unreliable wireless 
communication between nodes. 

 
Figure 5. Abort rate vs. disconnection probability 

As shown in Figure 5, the abort rate of SODA is at least 5% lower 
than those of SESMO and S2PL when disconnection probability 
is <= 0.5 because SODA uses stable cluster heads as coordinating 
servers, is optimistic so that it does not block transactions, and 
utilizes the dynamic adjustment of sequential order of committed 
transactions to reduce aborts. The abort rate of SESAMO is still 
slightly lower than S2PL’s due to the same reason discussed 
above, and they are almost the same when the disconnection 
probability is 1. Since SESAMO has at least 79% abort rate, this 
shows that SESAMO does not address frequent disconnections. 

 
Figure 6. Abort rate vs. percentage of disconnection 

probability 

Since in a clustered MANET, cluster heads are more stable than 
non-cluster head nodes, cluster heads may have less disconnection 
probability than non-cluster head nodes. In order to study how 



less disconnection probability that cluster heads can have 
comparing to non-cluster head nodes, we test the percentage of 
disconnection probability that cluster heads can have from 10% to 
100%. For example, if the default disconnection probability is 0.5 
and cluster heads can have 50% of disconnection probability, then 
cluster heads will have only 0.25 chances to get disconnected. 
Figure 6 shows that the abort rate of SODA decreases as the 
percentage of disconnection probability that cluster heads can 
have increases. This is mainly because cluster heads become more 
stable when they have fewer disconnections. In other words, 
fewer transactions are aborted if more stable nodes are elected as 
the cluster heads.  However, the abort rates of SESAMO and 
S2PL do not change because their designs do not involve cluster 
heads. 

6. CONCLUSIONS 
Many excellent CC techniques have been proposed for cellular 
mobile databases; but little research has been done for CC in 
MANET databases. In this paper, we proposed a CC algorithm 
called SODA for MANET databases. In SODA, all the identified 
characteristics of MANET databases are taken into account. 
SODA is based on optimistic CC to offer high concurrency and 
dynamically adjusts the sequential order of transactions to reduce 
transaction abort rate. The simulation experiments showed that 
the transaction abort rate incurred by SODA is lower than those 
incurred by the existing techniques. As future work, we will 
conduct simulation experiments to study other performance 
metrics, including the energy consumption by clients and servers 
as well as the balance in energy consumption among nodes. We 
will also incorporate data replication into our model to improve 
the data access time and availability. 
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