
An Energy-efficient Concurrency Control Algorithm

for Mobile Ad-hoc Network Databases

Zhaowen Xing and Le Gruenwald

School of Computer Science

University of Oklahoma

Norman, OK 73019, USA

{zhaowenxing, ggruenwald}@ou.edu

Abstract. MANET does not require any fixed infrastructure, thus it fits well

in disaster rescue and military operations. However, when a node has no or

insufficient energy to function, communication may fail, disconnections may

happen, and transactions may be aborted if they are time-critical and miss their

deadlines. Energy-efficient transaction management becomes an important

issue in MANET database applications. In this paper, we propose an energy-

efficient concurrency control (CC) algorithm for MANET databases in a

clustered network architecture where nodes are divided into clusters, each of

which has a node, called cluster head, responsible for the processing of all

nodes in the cluster. In our algorithm, in order to conserve energy and balance

the energy consumption among servers, we elect cluster heads to work as

coordinating servers, and propose an optimistic CC algorithm to offer high

concurrency and avoid wasting limited system resources. The simulation

results confirm that our technique performs better than existing techniques.

Keywords: Mobile ad-hoc network, clustering, transaction management,

concurrency control.

1 Introduction

A Mobile Ad-hoc Network (MANET) is a collection of mobile, wireless and battery-

powered nodes, and every node can roam freely. A mobile database system built on

a MANET is called a MANET database system. In this system, both clients and

servers are mobile, wireless and battery-powered, and the databases are stored at

servers and accessed by clients. As no fixed infrastructure is required, MANET

databases can be deployed in a short time and mobile users can access and manipulate

data anytime and anywhere, and they become an attractive solution for handling

mission-critical database applications, such as disaster response and recovery systems

[1, 2, 3] and military operations like battlefields [1]. In these applications,

transactions must be executed not only correctly but also within their deadlines. To

guarantee this, a concurrency control (CC) technique must be a part of the system.

CC is the activity of preventing transactions from destroying the consistency of the

database while allowing them to run concurrently, so that the throughput and resource

utilization of the database system are improved and the waiting time of concurrent

transactions is reduced [4]. However, because of their mobility and portability,

mobile nodes have severe resource constraints in terms of battery capacity, memory

size and CPU speed. As the battery capacity is limited, it compromises the ability of

each mobile node to support services and applications [5]. Also battery technology

is not developed as rapidly as mobile devices and wireless technologies, so that the

limited battery lifetime is always a bottleneck for the development of improved

mobile devices [6]. Therefore, a suitable CC algorithm for MANET databases

should be energy-efficient.

Although there are CC algorithms proposed for cellular mobile network databases

[7, 8, 9], to the best of our knowledge, only one CC algorithm has been proposed for

MANET databases [10]; however, this algorithm not only relaxes transaction

atomicity and global serializability, but also does not take energy efficiency into

account. To fill this gap, in this paper we propose an optimistic CC algorithm,

called Sequential Order with Dynamic Adjustment (SODA), which takes mobility,

real-time constraints and energy efficiency into consideration, to handle mission-

critical databases in a clustered MANET architecture. Our objective is to minimize

energy consumption of each mobile node, and balance energy consumption among

servers, so that mobile nodes with low energy do not run out of energy quickly, and

thus, the number of disconnections and transaction aborts due to low energy or energy

exhaustion can be reduced. The rest of the paper is organized as follows. Section 2

reviews some of recent CC algorithms for mobile databases. Section 3 describes the

proposed MANET architecture. Section 4 presents our CC algorithm, SODA.

Section 5 provides the simulation results. Finally Section 6 concludes the paper with

future research.

2 Related Work

As cellular mobile networks and MANET have many similar characteristics, in this

section, we review the CC techniques recently proposed for databases in both

networks.

Look-Ahead Protocol (LAP) was proposed in [8] to maintain data consistency of

broadcast data in mobile environments. In LAP, update transactions are classified

into either hopeful or hopeless transactions. Hopeless transactions can not commit

before their deadlines and are aborted as early as possible to save system resources

and reduce data locks, while hopeful transactions can continue to execute their read

and write operations using the two-phase locking (2PL) algorithm.

Multi-Version Optimistic Concurrency Control for Nested Transactions (MVOCC-

NT) [9] was proposed to process mobile real-time nested transactions using multi-

versions of data in mobile broadcast environments. MVOCC-NT adopts the

timestamp interval with dynamic adjustment to avoid unnecessary aborts. At mobile

clients, all active transactions perform backward pre-validation against transactions

committed in the last broadcast cycle at the fixed server. Read-only transactions can

commit locally if they pass the pre-validation, but surviving update transactions have

to be transferred to the fixed server for the final validation. Choi et al. [7] proposed

2-Phase Optimistic Concurrency Control (2POCC) to process mobile transactions in

wireless broadcast environments. Transaction validation is done in two phases:

partial backward validation at mobile clients and final validation at the fixed server.

In both phases, if a transaction Ti is serialized before transaction Tj then the writes of

Ti should not overwrite the writes of Tj and affect the reads of Tj.

All the CC techniques reviewed above were designed for cellular mobile

databases, which heavily rely on broadcast techniques to save mobile nodes’ energy

and on static servers that have no energy limitation; thus, they are not suitable for

MANET databases.

Semantic Serializability Applied to Mobility (SESAMO) [10] was proposed for

MANET databases. SESAMO is based on semantic serializability, which requires

that not only databases on mobile nodes be disjoint but also updates on a database

depend only on the values of the data in the same database; therefore, transaction

atomicity and global serializability can be relaxed. However, in SESAMO, global

transactions still need be serialized at each site using strict two-phase locking (S2PL),

while at the same time each site must maintain the consistency of its own local

database. SESAMO does not take energy efficiency into account. In addition, in

MANET databases for mission-critical applications, the assumption for semantic

serializability does not hold because each database depends on each other due to the

organizational structure of the applications. For example, in a disaster rescue

scenario, before sending firefighters out to pursue some actions, the status of their

equipment has to be checked, where the firefighter database may be stored on one

mobile server, and the equipment database may be stored on another mobile server.

3 Proposed Architecture

In this section, we introduce our clustered MANET architecture which is built by

applying our robust weighted clustering algorithm, called MEW (Mobility, Energy,

and Workload) [11]. MEW takes mobile nodes’ mobility, energy and workload into

consideration when grouping mobile nodes into clusters a MANET. In this

architecture, mobile nodes are divided into clusters, each of which has one cluster

head working as the coordinating server responsible for the transaction processing of

the mobile nodes, called cluster members, within the cluster. Cluster heads can

communicate with each other through some mobile nodes that work as gateways.

Similarly, mobile nodes from different clusters can also communicate with each other,

but they have to go through their cluster heads to get the destination addresses first.

Also, nodes are put into the same cluster based on their application semantics.

We choose this architecture for three reasons. First, in many MANET

applications, such as disaster response and recovery systems [2, 3] and military

operations [12], users are logically grouped. Second, because every node is mobile

in a MANET, the network topology may change rapidly and unpredictably over time.

According to [13], clustered architectures are proper to keep the network topology

stable as long as possible, so that the performance of routing and resource relocation

protocols is not compromised. Third, in order to accommodate our optimistic CC

algorithm SODA to guarantee global serializability, the information of committed

global transactions is maintained by the cluster head with the highest remaining

energy.

Fig. 1 shows an example of a clustered

MANET database architecture with three

clusters, each of which is represented by

a large solid circle with mobile clients

and servers shown as PDA/iphone and

laptop icons, respectively. The arrows

between the devices show the

communication between them. In the

rest of this section, we describe the

functionality of mobile nodes (Section

3.1), the MEW algorithm (Section 3.2),

the cluster formation (Section 3.3), and

the cluster maintenance (Section 3.4).

Fig. 1. Architecture of a clustered MANET

database

3.1 Mobile Node Functionality

Depending on the communication strength, computing power and storage size, mobile

nodes are classified into clients and servers. On clients, only the query processing

modules that allow them to submit transactions and receive results are installed, while

on servers, the complete database management systems are installed to provide

transaction processing services. Servers are further classified into coordinating

servers and participating servers. Coordinating servers are the ones which receive

global transactions from clients, divide them into sub-transactions, forward these sub-

transactions to appropriate participating servers, and maintain the ACID (Atomicity,

Consistency, Isolation, and Durability) [4] properties of global transactions.

Participating servers are the ones that process sub-transactions transmitted from

coordinating servers, and preserve their ACID properties.

The entire database is partitioned into local databases and distributed to different

servers, and there is no caching or replication technique involved for simplicity.

Transactions are based on the simple flat model, which contains a set of read, write,

insert, and delete operations. Any subset of operations of a global transaction that

access the same server is submitted and executed as a single sub-transaction.

With respect to the clustered MANET architecture shown in Fig. 1, a mobile node

is either a cluster head when it is a coordinating server or is a cluster member when it

is either a participating server or a client. In order to guarantee global serializability

and reduce communication overhead, among cluster heads the one with highest

remaining energy is further elected as the primary cluster head, which maintains the

information of committed global transactions and validates transactions globally.

3.2 The Basis of Our Clustering Algorithm - MEW

Being inspired by the mobility based clustering algorithm, MOBIC [14], and the

weighted clustering algorithm, WCA [13], and considering a new system parameter

“Energy Decreasing Rate” (EDR), we propose a weighted clustering algorithm, called

MEW (Mobility, Energy, and Workload), to build a stable backbone in MANETs.

The objective of MEW is to form and maintain stable clusters in MANETs by

electing nodes with the highest weights as cluster heads, where the weight of a node is

calculated as a combination of its mobility, energy and workload.

To capture the mobility of nodes, we do not consider their absolute roaming speed.

This is because it is easy to calculate the speed’s quantity, but it is hard to predict the

direction of movement. Without the direction, the speed’s quantity alone is not

appropriate to justify whether a node is a good candidate for cluster head or not. For

instance, two nodes that have small speeds move in the opposite directions. As time

goes, they will be out of each other’s transmission range and get disconnected from

each other. Also the utilization of GPS is opted out because GPS consumes the

limited battery energy of mobile nodes.

Instead, two mobility metrics, Relative Mobility between two nodes i and j (RMij)

[14] and Mobility Prediction for node j (MPj), are introduced to monitor the mobility

of nodes and applied to determine whether a node is suitable to be a cluster head.

RMij measures whether node i and node j move relatively together; MPj measures

whether all 1-hop neighbors of node j move relatively together along with node j.

Below we explain how each of the two metrics is calculated.

For each node j (1 ≤ j ≤ N for N nodes in the network), after receiving two

successive HELLO messages from every 1- hop neighbor i (1 ≤ i ≤ n if there are n

neighbors), the RMij is calculated by Equation (1). RSSij1 and RSSij2 are the received

signal strengths (RSS) that are read from the RSS indicator when the first and second

HELLO messages from the same neighbor i are received by node j, respectively.

Based on the value of RMij, we can say that if RMij is equal to 1, then the node j and

its neighbor i either do not move at all or move with the same speed in the same

direction; if RMij is less than 1, then they move close to each other; otherwise, they

move away from each other.

2

1

ij

ij

ij
RSS

RSS
RM =

(1)

For each node j, in order to take into account the mobility of all n 1-hop neighbors

and have an integral value to represent them, MPj is calculated as the standard

deviation of RM1j, RM2j, …, RMnj shown in Equation (2). However, for the stability

of elected clusters, we prefer RMij to be equal to or less than 1 because we want

cluster heads not to move away from their members. Thus, in the MPj calculation,

the mean of RMij (1 ≤ i ≤ n) is 1 instead of the actual mean. A node j with a lower

MPj means that it stays closer to its neighbors, thus, it is a better candidate for the

cluster head among its neighbors.

1,

)(
1

2

=

−

=

∑
=

ij

n

i

ijij

j RMwhere
n

RMRM

MP (2)

When dealing with the limited battery energy, we consider not only the Remaining

Energy (RE) of each node but also its Energy Decrease Rate (EDR) as the workload

because nodes with a heavier workload consume more energy, so that we can balance

the energy usage and prevent cluster heads from running out of energy quickly. In

other words, for each node j, EDRj is considered because REj represents only the

current state of the energy level and the node’s energy will run out soon if it normally

has a heavy workload. The EDRj at time interval [t1, t2] is calculated by using

Equation (3), where REj1 and REj2 are the remaining energy of node j at time t1 and t2,

respectively.

12

21

tt

RERE
EDR

jj

j
−

−

=

(3)

A node with a lower EDR indicates that it was not busy at least during the interval

[t1, t2]. However, when a node has a busy work history, it most likely will be busy in

the future as well. Since the larger the time interval is, the more accurate the EDR is

in indicating a node’s workload history, during the initial election, each node saves a

copy of its initial remaining energy and initial time as REj1 and t1, so that a more

accurate EDR can be calculated in the future cluster head reelection.

Based on the above analysis about mobility, energy and workload, it is obvious

that a node j is the best candidate for a cluster head among all its neighbors if its REj

is the highest, its MPj is the lowest and its EDRj is the lowest. In other words, a node

with the highest weight is the best candidate for a cluster head when we combine

these three metrics together as the weight, which is calculated in Equation (4). Since

these metrics have different units, we apply the inversed exponential function to

normalize MPj and EDRj and bound their values between 0 and 1. REj is left out

because the value of the remaining energy is at most 100%.

jj EDR

j

MP

j efREfefW
−−

++= *** 321
(4)

In Equation (4), REj = REj2, the weighting factors f1, f2 and f3 are set according to

different application scenarios, and f1 + f2 + f3 = 1. When we let f2 = f3 = 0, that is,

we take away the effect of energy and workload, our algorithm turns into a mobility-

only-based approach just like MOBIC [14].

3.3 Cluster Formation

To form clusters, each node first broadcasts HELLO messages, collects 1-hop

neighbors’ information, and computes its weight based on mobility, energy and

workload using Equations (1), (2), (3) and (4) defined above. After broadcasting

their own weights and receiving all 1-hop neighbors’ weights, nodes with the highest

weights declare themselves as cluster heads, and 1-hop neighbors of cluster heads join

them as cluster members. The details of the cluster formation and different types of

messages used in cluster formation are presented in [11]. Note that because clients

have less communication strength, less computing power and smaller storage size

than servers, clients cannot be elected as cluster heads and cannot work as

coordinating servers.

3.4 Cluster Maintenance

Because every node can roam and has limited battery power in a MANET, cluster

heads can resign due to low remaining energy, the links between cluster members and

cluster heads can be broken, and the links between two cluster heads can be generated

[15]. Consequently, clusters need be re-clustered. In other words, leaving clusters,

joining clusters, merging clusters, and re-electing cluster heads are normal re-

clustering operations in a clustered MANET. However, these operations should be

performed only on demand to reduce the overhead of computation and

communication, and to provide consistent quality of service.

In order to maintain connections with neighbors, detect the link breaks and new

link establishments, each node needs periodically broadcast HELLO messages.

Being a cluster head, it has to periodically monitor (after a global transaction

commits) its remaining energy level so that it will resign from the cluster head status

when the remaining energy drops below a predefined Low Energy Threshold (LET).

Relying on these two periodic operations, cluster maintenance can be done by

recovery from a link break between a member and its cluster head, recovery from a

link establishment when two cluster heads become 1-hop neighbors, or recovery from

a link break when a cluster head resigns because its current remaining energy of a

cluster head is less than LET. The details of these recovery tasks are discussed in [11].

4 Proposed Concurrency Control Algorithm: SODA

In this section, we describe our proposed CC algorithm, called Sequential Order with

Dynamic Adjustment (SODA). We first show how SODA works in a centralized

database as originally presented in [17]. We then discuss how SODA works in a

clustered MANET database.

In [17], SODA is proposed for mobile P2P databases, in which each peer carries

its own local database, is fully autonomous and shares information in on-the-fly

fashion. Therefore, although global transactions (or called remote queries) do exist,

it is unnecessary to maintain the global serializability among peers, which is required

in traditional distributed databases and MANET databases that we focus on in this

paper. However, in mobile P2P databases every peer still needs to guarantee the

correctness of transactions that it processes locally because it may collect or update its

own data, reply to requests and update replica simultaneously.

4.1 How SODA Works in a Centralized Database

Inspired by the dynamic adjustment technique proposed in [18], and based on the

combination of Timestamp Ordering (TO), Optimistic Concurrency Control (OCC),

and backward validation, we propose an optimistic CC algorithm called SODA. In

SODA, a list of committed transactions is maintained to validate committing

transactions. During the validation, the list can be dynamically adjusted to avoid

unnecessary aborts. After the committing transaction commits, the list is updated

and trimmed.

Assume that Ti’s (i = 1, …, n) are committed transactions, and T is a

validating/committing transaction. If we simply let the validation/commit order be

the serialization order like in traditional OCC, and if there is a read-write conflict

between T and Ti, i.e., T reads a common data item d before Ti updates d, then T is

aborted because two orders are different. Such aborts should be avoided.

To avoid such aborts, in SODA, a dynamic order instead of validation order among

committed transactions is used. In SODA, a Sequential Order (SO) of committed

transactions is maintained as {T1, T2, …, Ti, ..., Tn} (also called a history list, which is

ordered from left to right) and can be dynamically adjusted. The dynamic

adjustment consists of simple and complex cases. In the simple case, the validating

transaction T can commit if it can be directly inserted into the maintained sequential

order without adjustment, and the final sequential order will be {T1, T2, …, low, … T,

up, ..., Tn}, such that T must-be-serialized-after the transaction low but before the

transaction up. On the other hand, in the complex case, the sequential order must be

adjusted before the insertion of T. After T passes the validation and commits, the

maintained SO is updated with T’s information. In addition, old committed

transactions are removed from the maintained SO to reduce the overhead and save the

limited storage.

To prove the correctness (or completeness) of SODA, we must show that any

schedule produced by SODA is serializable. To fulfill this goal, we proved that the

new serialization graph is still acyclic after the addition of any newly committed

transaction that has passed our validation test. Further details can be found in [17].

4.2 How SODA Works in a Clustered MANET Database

In order to make SODA work effectively in a clustered MANET database, the

coordinating server functionality is combined with the cluster head’s functionality

because a cluster head is elected by our MEW algorithm as described in Section 3 and

is the nearest server with the highest energy in clients’ neighborhood. This would

enable clients to save time, limited battery energy and bandwidth that they must spend

on identifying suitable servers to which they send their transactions. Therefore, only

three major functionalities are required: the primary cluster head functionality, cluster

head functionality, and participating server functionality as shown in Fig. 2. Note

that one server can have all the three functionalities at the same time.

Fig. 2. Transaction flow in a clustered MANET database

4.2.1 Transaction execution model

As shown in Fig. 2, a transaction T issued by a client is distributed to its cluster head;

the cluster head divides T into sub-transactions and transmits them to the appropriate

participating servers according to the global database schema. Each participating

server processes the sub-transactions locally and sends the results back to the cluster

head. The cluster head runs the 2-Phase Commit (2PC), and gathers all results from

the participating servers. Note that we adopt 2PC here due to its simplicity as our

research goal is to develop a concurrency control algorithm, not a commit algorithm;

however, we do plan to include a more suitable commit protocol for MANET

databases in our future work. If running 2PC successfully, the cluster head sends T

to the primary cluster head to validate T globally based on the SO of committed

global transactions; otherwise, the cluster head sends an abort message directly to the

client. After receiving the global validation result, the cluster head sends the final

results to the client.

4.2.2 The primary cluster head functionality

The primary cluster head has the following functionalities:

• It maintains the sequential order (SO) of committed global transactions.

• It receives global transaction validation requests from non-primary cluster

heads.

• It validates global transactions using SODA. After validation, it sends the

validation results to the non-primary cluster head.

• It updates the SO after a global transaction commits and adds this global

transaction’s read set, write set and the timestamp of both sets to the data

structure of the maintained SO.

• It removes the old committed transactions that are not serialized after any

active/committed global transaction from the maintained SO after a global

transaction commits.

• It periodically checks (after a global transaction commits) its remaining

energy level. If its level is below a predefined threshold LET and another

cluster head’s remaining level is above the threshold, it resigns its cluster head

status and elects a new primary cluster head that has the highest remaining

energy from all cluster heads. It then transfers the information of all the

transactions it stores to the new primary cluster head. Note that since the

primary cluster head is also a non-primary one, if the primary one resigns, the

non-primary one also resigns if there is a candidate in the neighborhood.

4.2.3 The non-primary cluster head functionality

A non-primary cluster head has the following functionalities:

• It receives a global transaction from a client, divides them into sub-

transactions, and sends the sub-transactions to appropriate participating

servers.

• It runs 2PC to request the status of the sub-transactions and requests the

timestamps of the global transaction’s read set.

• It propagates the global transaction to the primary cluster head after it

receives all successful messages of the sub-transactions. After receiving the

validation result, it sends the final results to the client.

• It periodically checks (after a global transaction commits) its remaining

energy level. If the level is below a predefined threshold and there is a

candidate for cluster head in the neighborhood, it resigns its cluster head

status and elects a new cluster head in the neighborhood. It then transfers

the information of all the transactions it stores to the new cluster head. Note

that if the old cluster head is also the primary cluster head, then the new

cluster head can be the new primary cluster head as well if this new one has

the highest remaining energy among all cluster heads.

4.2.4 The participating server functionality

A participating server has the following functionalities:

• It receives and processes sub-transactions, and maintains the SO of committed

sub-transactions.

• It runs SODA locally based on the local SO of committed sub-transactions

when it receives the request about the status of the sub-transactions.

• It sends the final status of the sub-transactions to the requesting cluster head.

It also sends the timestamps of the read sets of the sub-transactions to the

cluster head if the sub-transactions pass the validation.

• It updates the local SO of committed sub-transactions if a sub-transaction

commits and adds this sub-transaction’s read set, write set and timestamps of

both sets to the data structure of the maintained SO. It removes the old

committed sub-transactions that are not serialized after any active/committed

sub-transaction from the maintained SO after a sub-transaction commits.

5 Performance Evaluation

The simulation experiments are conducted to compare the performance of our

proposed SODA with that of SESAMO [10] as unlike other existing CC for cellular

mobile databases, SESAMO was specifically designed for MANET databases.

Our simulation models consist of a transaction generator, a real-time scheduler

that schedules transactions using early deadline first, participating servers,

coordinating servers or cluster heads for SODA only, and a deadlock manager for

SESAMO. The simulation model of SODA is the same as the transaction execution

model discussed in Section 4.2.1. The simulation model for SESAMO is similar to

the one of SODA except for a couple of points. First, SODA is applied locally and

globally to validate transactions, while in SESAMO, strict 2PL is applied locally [19]

and globally [10]. Second, SESAMO does not elect cluster heads and does not

apply 2PC; so it may randomly choose a server as the coordinating server.

5.1 Simulation Parameters and Performance Metrics

Our simulation models are implemented using the AweSim simulation language [20].

Global transactions are defined as entities, and mobile modes are defined as resources

with different initial energy levels and randomly distributed locations.

The static simulation parameters and their values are shown in Table 1. We

conducted experiments to study the impacts of inter-arrival time on the system

performance, which is the mean of an exponentially distributed time between the

arrivals of two consecutive transactions. The inter-arrival time is varied over the

range from 1 to 10 seconds in order to vary the system load [21] and create a scenario

with high data contention.
Table 1. Simulation Parameters

Static Parameters Value Reference

Simulation area (m2) 1000x1000 [21]

Transmission range (m) 250 [22]

Node moving speed (m/s) 2 [22]

Total transactions 1000 [21]

Low Energy Threshold (LET) 50%

Server energy consumption rate in active mode (watts) 30.3 [23]

Server energy consumption rate in doze mode (watts) 12.5 [23]

Five performance metrics are used and they are defined in Equations (5), (6), (7),

(8), and (9), respectively: total time when servers are in active mode, abort rate, total

number of cluster head reelections, total energy consumed by all servers, and average

difference in remaining energy between two servers. Since transactions in mission-

critical applications should be executed not only correctly but also within their

deadlines, we use firm real-time transactions to evaluate the performance. In our

simulation, a transaction will be aborted if either it misses its deadline or the system

could not complete it successfully (e.g. when it is aborted by the CC technique).

A server is in active mode only if it is processing transactions; otherwise, it is in

doze mode to save energy. The total time when servers are in active mode evaluates

whether servers are busy to process transactions most of time, where m is the total

number of servers and Ta,i is the total time when server Si is in active mode.

1

,∑
=

=

m

i
iaT tive mode are in acverse when serTotal tim

(5)

The second performance metric is the abort rate to measure the percentage of

aborted transactions, and can be computed as below:

%*
nstransactiogenerated of#Total

nstransactioabortedof#Total
ratetAbor 100=

(6)

The third performance metric is the total number of cluster head (primary and non-

primary) reelections to evaluate whether an algorithm takes balancing energy among

servers into consideration, where Nprimay (Nnon-primay) is the number of primary (non-

primary) cluster head reelections. However, more reelections do not guarantee more

balanced energy among servers because there is an overhead of reelections and

transferring the information from the old cluster head to the new one.

 primarynonprimay N Ntions ad reelecluster heber of cTotal num
−

+= (7)

The fourth performance metric is the total amount of energy consumed by all

servers in both active mode and doze mode. This metric evaluates how energy-

efficient each technique is, where m is the total number of servers, ECRa (ECRd) is the

energy consumption rate when a server is in active (doze) mode, and Ta,i (Td,i) is the

total time when server Si is in active (doze) mode.

)**(
1

,,∑
=

+=

m

i

iddiaa TECRTECR rsd by servegy consumeTotal ener

(8)

The fifth performance metric is the average difference in remaining energy

between two servers to evaluate how balanced the system is in terms of energy

consumption. The more balanced the system is, the longer lifetime the system has.

This metric is computed using the following formula, where m is the total number of

servers, and REi and REj are the remaining energy of servers Si and Sj, respectively.

)*m(m

|-RE|RE

 serverstween two energy begn remaininfference iAverage di

m

i

m

j

ji

1

1 1

−

=

∑∑
= = (9)

5.2 Simulation Results

Fig. 3 shows in both SODA and SESAMO, that the total time when servers are in

active mode increases when the transaction inter-arrival time increases. The total

time of SESAMO is always much longer than SODA’s because SESAMO is

pessimistic and uses locks to hold limited system resources to prevent conflicting

transactions from accessing them. In other words, servers have to be in active mode

most of time to keep processing transactions.

Fig. 3. The total time when servers are in active

mode vs. inter-arrival time

Fig. 4. The abort rate vs. inter-arrival time

Fig. 4 shows that the abort rates of SODA and SESAMO decrease when the

transaction inter-arrival time increases. The abort rate of SODA is much lower than

that of SESAMO right after the inter-arrival time is longer than 1 second. This is

mainly because SODA is optimistic and non-blocking, and conflicts among

transactions become rare, so that servers are not in active mode most of time (as

shown in Fig. 3) and can process transactions in time. Although SESAMO does not

enforce global serializability, strict 2PL running both locally and globally still blocks

many conflicting transactions. When the inter-arrival time is getting shorter, it is

easy to see that the abort rate of SODA is close to SESAMO’s because conflicts

among transactions increase; in addition, this confirms the fact that optimistic CC

techniques work well only if conflicts among transactions are rare.

Fig. 5 shows the total number of cluster head reelections of SODA increases as the

inter-arrival time increases. When the inter-arrival time reaches 10 seconds, the total

simulation time is close to 3 hours (1000 transactions * 10 seconds = 10,000 seconds).

Consequently, more cluster heads’ remaining energy is below the predefined

threshold LET, and more reelections are triggered to change roles for preserving

energy. However, the total number of reelections of SESAMO is always zero

because its design does not involve any cluster heads. In other words, SESAMO

does not rotate roles among servers to balance energy.

Fig. 5. The total number of cluster head

reelections vs. inter-arrival time

Fig. 6. The total energy consumed by all

servers vs. inter-arrival time

Fig. 6 shows that the total energy consumption of all servers increases with the

increase of the inter-arrival time. This is expected because more transactions are

committed as inter-arrival time increases as shown in Fig. 4, so that each server has to

spend more time in active mode on processing these committed transactions as shown

in Fig. 3. SODA consumes at least 51,124 J and at most 749,727 J less than

SESAMO right after when the inter-arrival time is longer than 1 second. This

happens because transactions arrive into the system with a slow rate, and conflicts

among transactions become much rarer, so that optimistic SODA performs better than

pessimistic SESAMO due to no prevention of conflicts overhead.

The average difference in energy consumption between two servers when varying

the inter-arrival time is shown in Fig. 7. Through this metric, we want to check

whether the energy consumption is balanced among servers.

It is easy to see that SODA balances

remaining energy better than SESAMO.

This is because more non-primary

cluster heads and primary cluster heads

with higher energy are reelected as

shown in Fig. 5. However, in

SESAMO, there is no role rotation

strategy and clients may keep submitting

transactions to the same servers so that

these servers are overloaded.

Fig. 7. The average difference in remaining

energy between two servers vs. inter-arrival

time

6 Conclusion and Future Research

In this paper, we introduced a database transaction concurrency control technique,

called SODA, that can be used to support mission-critical applications such as disaster

rescue and battlefields in a clustered MANET. This technique considers transaction

real-time constraints as well as mobility, energy limitation, and workload of both

mobile servers and mobile clients in a clustered MANET architecture. Our solution

is aimed at reducing transaction abort rate while saving the energy consumption by

servers and balancing the energy consumption among servers. With respect to these

performance metrics, the simulation results show the superiority of SODA over the

existing technique, SESAMO.

For future research, we plan to incorporate data replication into our model to

improve data access time and availability. We will also investigate the impacts of

mobility (speed) of mobile nodes, disconnection time and read-only transaction

percentage on abort rate, response time, total energy consumed by all servers, and

average difference in remaining energy between two servers. We also plan to

investigate alternative commit protocols.

Acknowledgment: This material is based upon work supported by (while serving at)

the National Science Foundation (NSF) and the NSF Grant No. IIS-0312746.

References

1. Alampalayam, S. P., Srinivasan, S.: Intrusion Recovery Framework for Tactical Mobile
Ad hoc Networks. the International Journal of Computer Science and Network Security,
vol. 9, no. 9, pp. 1--10 (2009)

2. Catarci, T., De Leoni, M., Marrella, A., Mecella, M., Salvatore, B., Vetere, G., Dustdar,
S., Juszczyk, L., Manzoor, A., Truong, H.: Pervasive Software Environments for
Supporting Disaster Responses. IEEE Internet Computing, vol. 12, no. 1, pp.26--37 (2008)

3. Lu, W., Seah, W. K. G., Peh, E. W. C., Ge, Y.: Communications Support for Disaster
Recovery Operations using Hybrid Mobile Ad-Hoc Networks. In: Proceedings of the 32nd
IEEE Conference on Local Computer Networks, Dublin, Ireland, pp. 763--770 (2007)

4. Silberschatz, A., Korth, H. F., Sudarshan, S.: Database Systems Concepts, McGraw-Hill
College (2005)

5. Chlamtac, I., Conti, M., Liu, J.: Mobile Ad Hoc Networking: Imperatives and challenges.
Ad Hoc Networks Publication, vol. 1, no. 1, pp. 13--64 (2003)

6. Sklavos, N., Touliou, K.: Power Consumption in Wireless Networks: Techniques &
Optimizations. In: Proceedings of The IEEE Region 8, EUROCON 2007, International
Conference on "Computer as a Tool" (2007)

7. Choi, M., Park, W., Kim, Y.: Two-phase Mobile Transaction Validation in Wireless
Broadcast Environments. In: Proceedings of the 3rd International Conference on
Ubiquitous Information Management and Communication, pp. 32--38 (2009)

8. Lam, K., Wong, C. S., Leung, W.: Using Look-ahead Protocol for Mobile Data Broadcast.
In: Proceedings of the 3

rd
 International Conference on Information Technology and

Applications, pp. 342--345 (2005)

9. Lei, X., Zhao, Y., Chen, S., Yuan, X.: Scheduling Real-Time Nested Transactions in
Mobile Broadcast Environments. In: Proceedings of the 9th International Conference for
Young Computer Scientists, pp. 1053--1058 (2008)

10. Brayner, A., Alencar, F. S.: A Semantic-serializability Based Fully-Distributed
Concurrency Control Mechanism for Mobile Multi-database Systems. In: Proceedings of
the 16th International Workshop on DEXA, pp. 1085--1089 (2005)

11. Xing, Z., Gruenwald, L., Phang, K. K.: A Robust Clustering Algorithm for Mobile Ad-hoc
Networks. In: a chapter on the Handbook of Research on Next Generation Mobile
Networks and Ubiquitous Computing. Editor Samuel Pierre, IGI Global, ISBN:
160566250X, pp. 187-200 (2010)

12. Wireless Ad Hoc Technology, http://www.atacwireless.com/adhoc.html

13. Chatterjee, M., Das, S. K., Turgut, D.: WCA: A Weighted Clustering Algorithm for
Mobile Ad Hoc Networks. Cluster Computing, vol. 5, no. 2, pp. 193--204 (2002)

14. Basu, P., Khan, N., Little, T. D. C.: A Mobility Based Metric for Clustering in Mobile Ad
Hoc Networks. In: Proceedings of IEEE ICDC, pp. 413--418 (2001)

15. Xue, M., ER, I., Seah, W. K. G.: Analysis of Clustering and Routing Overhead for
Clustered Mobile Ad Hoc Networks. In: Proceedings of the 26th IEEE international
Conference on Distributed Computing Systems, pp. 46--53 (2006)

16. Wang, Y., Kim, M. S.: Bandwidth-adaptive Clustering for Mobile Ad Hoc Networks. In:
Proceedings of International Conference on Computer Communications and Networks, pp.
103--108 (2007)

17. Xing, Z., Gruenwald, L., Phang, K. K.: SODA: an Algorithm to Guarantee Correctness of
Concurrent Transaction Execution in Mobile P2P Databases. In: Proceedings of the 19th
International Conference on DEXA Workshop, pp. 337--341 (2008)

18. Hwang, S.: On Optimistic Methods for Mobile Transactions. Journal of Information
Science and Engineering, vol. 16, no. 4, pp. 535--554 (2000)

19. Holanda, M., Brayner, A., Fialho, S.: Introducing self-adaptability into transaction
processing. In: Proceedings of the 2008 ACM symposium on Applied computing, pp. 992-
-997 (2008)

20. Pritsker, A., O’Reilly, J.: Simulation with Visual SLAM and AweSim, 2nd edition. New
York: John Wiley & Sons (1999)

21. Gruenwald, L., Banik, S. M., Lau, C. N.: Managing real-time database transactions in
mobile ad-hoc networks. Distributed and Parallel Databases journal, vol. 22, no. 1, pp. 27-
-54 (2007)

22. Leu, Y., Hung, J. J., Lin, M. B.: A New Cache Invalidation and Searching Policy for
mobile Ad Hoc Networks. In: Proceedings of the 2007 annual Conference on International
Conference on Computer Engineering and Applications, pp. 337--343 (2007)

23. Notebookcheck, http://www.notebookcheck.net/Review-Lenovo-ThinkPad-T400s-
Notebook.21081.0.html

