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Abstract.  MANET does not require any fixed infrastructure, thus it fits well 

in disaster rescue and military operations.  However, when a node has no or 

insufficient energy to function, communication may fail, disconnections may 

happen, and transactions may be aborted if they are time-critical and miss their 

deadlines.  Energy-efficient transaction management becomes an important 

issue in MANET database applications.  In this paper, we propose an energy-

efficient concurrency control (CC) algorithm for MANET databases in a 

clustered network architecture where nodes are divided into clusters, each of 

which has a node, called cluster head, responsible for the processing of all 

nodes in the cluster.  In our algorithm, in order to conserve energy and balance 

the energy consumption among servers, we elect cluster heads to work as 

coordinating servers, and propose an optimistic CC algorithm to offer high 

concurrency and avoid wasting limited system resources.  The simulation 

results confirm that our technique performs better than existing techniques. 

Keywords: Mobile ad-hoc network, clustering, transaction management, 

concurrency control. 

1   Introduction 

A Mobile Ad-hoc Network (MANET) is a collection of mobile, wireless and battery-

powered nodes, and every node can roam freely.  A mobile database system built on 

a MANET is called a MANET database system.  In this system, both clients and 

servers are mobile, wireless and battery-powered, and the databases are stored at 

servers and accessed by clients.  As no fixed infrastructure is required, MANET 

databases can be deployed in a short time and mobile users can access and manipulate 

data anytime and anywhere, and they become an attractive solution for handling 

mission-critical database applications, such as disaster response and recovery systems 

[1, 2, 3] and military operations like battlefields [1].  In these applications, 

transactions must be executed not only correctly but also within their deadlines.  To 

guarantee this, a concurrency control (CC) technique must be a part of the system. 

CC is the activity of preventing transactions from destroying the consistency of the 

database while allowing them to run concurrently, so that the throughput and resource 



utilization of the database system are improved and the waiting time of concurrent 

transactions is reduced [4].  However, because of their mobility and portability, 

mobile nodes have severe resource constraints in terms of battery capacity, memory 

size and CPU speed.  As the battery capacity is limited, it compromises the ability of 

each mobile node to support services and applications [5].  Also battery technology 

is not developed as rapidly as mobile devices and wireless technologies, so that the 

limited battery lifetime is always a bottleneck for the development of improved 

mobile devices [6].  Therefore, a suitable CC algorithm for MANET databases 

should be energy-efficient.  

Although there are CC algorithms proposed for cellular mobile network databases 

[7, 8, 9], to the best of our knowledge, only one CC algorithm has been proposed for 

MANET databases [10]; however, this algorithm not only relaxes transaction 

atomicity and global serializability, but also does not take energy efficiency into 

account.  To fill this gap, in this paper we propose an optimistic CC algorithm, 

called Sequential Order with Dynamic Adjustment (SODA), which takes mobility, 

real-time constraints and energy efficiency into consideration, to handle mission-

critical databases in a clustered MANET architecture.  Our objective is to minimize 

energy consumption of each mobile node, and balance energy consumption among 

servers, so that mobile nodes with low energy do not run out of energy quickly, and 

thus, the number of disconnections and transaction aborts due to low energy or energy 

exhaustion can be reduced.  The rest of the paper is organized as follows.  Section 2 

reviews some of recent CC algorithms for mobile databases.  Section 3 describes the 

proposed MANET architecture.  Section 4 presents our CC algorithm, SODA.  

Section 5 provides the simulation results.  Finally Section 6 concludes the paper with 

future research. 

2   Related Work 

As cellular mobile networks and MANET have many similar characteristics, in this 

section, we review the CC techniques recently proposed for databases in both 

networks. 

Look-Ahead Protocol (LAP) was proposed in [8] to maintain data consistency of 

broadcast data in mobile environments.  In LAP, update transactions are classified 

into either hopeful or hopeless transactions.  Hopeless transactions can not commit 

before their deadlines and are aborted as early as possible to save system resources 

and reduce data locks, while hopeful transactions can continue to execute their read 

and write operations using the two-phase locking (2PL) algorithm. 

Multi-Version Optimistic Concurrency Control for Nested Transactions (MVOCC-

NT) [9] was proposed to process mobile real-time nested transactions using multi-

versions of data in mobile broadcast environments.  MVOCC-NT adopts the 

timestamp interval with dynamic adjustment to avoid unnecessary aborts.  At mobile 

clients, all active transactions perform backward pre-validation against transactions 

committed in the last broadcast cycle at the fixed server.  Read-only transactions can 

commit locally if they pass the pre-validation, but surviving update transactions have 

to be transferred to the fixed server for the final validation.  Choi et al. [7] proposed 



2-Phase Optimistic Concurrency Control (2POCC) to process mobile transactions in 

wireless broadcast environments.  Transaction validation is done in two phases: 

partial backward validation at mobile clients and final validation at the fixed server.  

In both phases, if a transaction Ti is serialized before transaction Tj then the writes of 

Ti should not overwrite the writes of Tj and affect the reads of Tj. 

All the CC techniques reviewed above were designed for cellular mobile 

databases, which heavily rely on broadcast techniques to save mobile nodes’ energy 

and on static servers that have no energy limitation; thus, they are not suitable for 

MANET databases. 

Semantic Serializability Applied to Mobility (SESAMO) [10] was proposed for 

MANET databases.  SESAMO is based on semantic serializability, which requires 

that not only databases on mobile nodes be disjoint but also updates on a database 

depend only on the values of the data in the same database; therefore, transaction 

atomicity and global serializability can be relaxed.  However, in SESAMO, global 

transactions still need be serialized at each site using strict two-phase locking (S2PL), 

while at the same time each site must maintain the consistency of its own local 

database.  SESAMO does not take energy efficiency into account.  In addition, in 

MANET databases for mission-critical applications, the assumption for semantic 

serializability does not hold because each database depends on each other due to the 

organizational structure of the applications.  For example, in a disaster rescue 

scenario, before sending firefighters out to pursue some actions, the status of their 

equipment has to be checked, where the firefighter database may be stored on one 

mobile server, and the equipment database may be stored on another mobile server. 

3   Proposed Architecture 

In this section, we introduce our clustered MANET architecture which is built by 

applying our robust weighted clustering algorithm, called MEW (Mobility, Energy, 

and Workload) [11].  MEW takes mobile nodes’ mobility, energy and workload into 

consideration when grouping mobile nodes into clusters a MANET.  In this 

architecture, mobile nodes are divided into clusters, each of which has one cluster 

head working as the coordinating server responsible for the transaction processing of 

the mobile nodes, called cluster members, within the cluster.  Cluster heads can 

communicate with each other through some mobile nodes that work as gateways.  

Similarly, mobile nodes from different clusters can also communicate with each other, 

but they have to go through their cluster heads to get the destination addresses first.  

Also, nodes are put into the same cluster based on their application semantics.  

We choose this architecture for three reasons.  First, in many MANET 

applications, such as disaster response and recovery systems [2, 3] and military 

operations [12], users are logically grouped.  Second, because every node is mobile 

in a MANET, the network topology may change rapidly and unpredictably over time.  

According to [13], clustered architectures are proper to keep the network topology 

stable as long as possible, so that the performance of routing and resource relocation 

protocols is not compromised.  Third, in order to accommodate our optimistic CC 

algorithm SODA to guarantee global serializability, the information of committed 



global transactions is maintained by the cluster head with the highest remaining 

energy. 

Fig. 1 shows an example of a clustered 

MANET database architecture with three 

clusters, each of which is represented by 

a large solid circle with mobile clients 

and servers shown as PDA/iphone and 

laptop icons, respectively.  The arrows 

between the devices show the 

communication between them.  In the 

rest of this section, we describe the 

functionality of mobile nodes (Section 

3.1), the MEW algorithm (Section 3.2), 

the cluster formation (Section 3.3), and 

the cluster maintenance (Section 3.4). 

 

Fig. 1. Architecture of a clustered MANET 

database 

3.1   Mobile Node Functionality   

Depending on the communication strength, computing power and storage size, mobile 

nodes are classified into clients and servers.  On clients, only the query processing 

modules that allow them to submit transactions and receive results are installed, while 

on servers, the complete database management systems are installed to provide 

transaction processing services.  Servers are further classified into coordinating 

servers and participating servers.  Coordinating servers are the ones which receive 

global transactions from clients, divide them into sub-transactions, forward these sub-

transactions to appropriate participating servers, and maintain the ACID (Atomicity, 

Consistency, Isolation, and Durability) [4] properties of global transactions.  

Participating servers are the ones that process sub-transactions transmitted from 

coordinating servers, and preserve their ACID properties. 

The entire database is partitioned into local databases and distributed to different 

servers, and there is no caching or replication technique involved for simplicity.  

Transactions are based on the simple flat model, which contains a set of read, write, 

insert, and delete operations.  Any subset of operations of a global transaction that 

access the same server is submitted and executed as a single sub-transaction. 

With respect to the clustered MANET architecture shown in Fig. 1, a mobile node 

is either a cluster head when it is a coordinating server or is a cluster member when it 

is either a participating server or a client.  In order to guarantee global serializability 

and reduce communication overhead, among cluster heads the one with highest 

remaining energy is further elected as the primary cluster head, which maintains the 

information of committed global transactions and validates transactions globally.  



3.2 The Basis of Our Clustering Algorithm - MEW  

Being inspired by the mobility based clustering algorithm, MOBIC [14], and the 

weighted clustering algorithm, WCA [13], and considering a new system parameter  

“Energy Decreasing Rate” (EDR), we propose a weighted clustering algorithm, called 

MEW (Mobility, Energy, and Workload), to build a stable backbone in MANETs.  

The objective of MEW is to form and maintain stable clusters in MANETs by 

electing nodes with the highest weights as cluster heads, where the weight of a node is 

calculated as a combination of its mobility, energy and workload. 

To capture the mobility of nodes, we do not consider their absolute roaming speed.  

This is because it is easy to calculate the speed’s quantity, but it is hard to predict the 

direction of movement.  Without the direction, the speed’s quantity alone is not 

appropriate to justify whether a node is a good candidate for cluster head or not.  For 

instance, two nodes that have small speeds move in the opposite directions.  As time 

goes, they will be out of each other’s transmission range and get disconnected from 

each other.  Also the utilization of GPS is opted out because GPS consumes the 

limited battery energy of mobile nodes. 

Instead, two mobility metrics, Relative Mobility between two nodes i and j (RMij) 

[14] and Mobility Prediction for node j (MPj), are introduced to monitor the mobility 

of nodes and applied to determine whether a node is suitable to be a cluster head.  

RMij measures whether node i and node j move relatively together; MPj measures 

whether all 1-hop neighbors of node j move relatively together along with node j.  

Below we explain how each of the two metrics is calculated. 

For each node j (1 ≤ j ≤ N for N nodes in the network), after receiving two 

successive HELLO messages from every 1- hop neighbor i (1 ≤ i ≤ n if there are n 

neighbors), the RMij is calculated by Equation (1).  RSSij1 and RSSij2 are the received 

signal strengths (RSS) that are read from the RSS indicator when the first and second 

HELLO messages from the same neighbor i are received by node j, respectively.  

Based on the value of RMij, we can say that if RMij is equal to 1, then the node j and 

its neighbor i either do not move at all or move with the same speed in the same 

direction; if RMij is less than 1, then they move close to each other; otherwise, they 

move away from each other.  
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For each node j, in order to take into account the mobility of all n 1-hop neighbors 

and have an integral value to represent them, MPj is calculated as the standard 

deviation of RM1j, RM2j, …, RMnj shown in Equation (2).  However, for the stability 

of elected clusters, we prefer RMij to be equal to or less than 1 because we want 

cluster heads not to move away from their members.  Thus, in the MPj calculation, 

the mean of RMij (1 ≤ i ≤ n) is 1 instead of the actual mean.  A node j with a lower 

MPj means that it stays closer to its neighbors, thus, it is a better candidate for the 

cluster head among its neighbors.  
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When dealing with the limited battery energy, we consider not only the Remaining 

Energy (RE) of each node but also its Energy Decrease Rate (EDR) as the workload 

because nodes with a heavier workload consume more energy, so that we can balance 

the energy usage and prevent cluster heads from running out of energy quickly.  In 

other words, for each node j, EDRj is considered because REj represents only the 

current state of the energy level and the node’s energy will run out soon if it normally 

has a heavy workload.  The EDRj at time interval [t1, t2] is calculated by using 

Equation (3), where REj1 and REj2 are the remaining energy of node j at time t1 and t2, 

respectively.  
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A node with a lower EDR indicates that it was not busy at least during the interval 

[t1, t2].  However, when a node has a busy work history, it most likely will be busy in 

the future as well.  Since the larger the time interval is, the more accurate the EDR is 

in indicating a node’s workload history, during the initial election, each node saves a 

copy of its initial remaining energy and initial time as REj1 and t1, so that a more 

accurate EDR can be calculated in the future cluster head reelection.  

Based on the above analysis about mobility, energy and workload, it is obvious 

that a node j is the best candidate for a cluster head among all its neighbors if its REj 

is the highest, its MPj is the lowest and its EDRj is the lowest.  In other words, a node 

with the highest weight is the best candidate for a cluster head when we combine 

these three metrics together as the weight, which is calculated in Equation (4).  Since 

these metrics have different units, we apply the inversed exponential function to 

normalize MPj and EDRj and bound their values between 0 and 1.  REj is left out 

because the value of the remaining energy is at most 100%. 
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In Equation (4), REj = REj2, the weighting factors f1, f2 and f3 are set according to 

different application scenarios, and f1 + f2 + f3 = 1.  When we let f2 = f3 = 0, that is, 

we take away the effect of energy and workload, our algorithm turns into a mobility-

only-based approach just like MOBIC [14]. 

3.3 Cluster Formation  

To form clusters, each node first broadcasts HELLO messages, collects 1-hop 

neighbors’ information, and computes its weight based on mobility, energy and 

workload using Equations (1), (2), (3) and (4) defined above.  After broadcasting 

their own weights and receiving all 1-hop neighbors’ weights, nodes with the highest 

weights declare themselves as cluster heads, and 1-hop neighbors of cluster heads join 

them as cluster members.  The details of the cluster formation and different types of 

messages used in cluster formation are presented in [11].  Note that because clients 

have less communication strength, less computing power and smaller storage size 

than servers, clients cannot be elected as cluster heads and cannot work as 

coordinating servers.  



3.4 Cluster Maintenance  

Because every node can roam and has limited battery power in a MANET, cluster 

heads can resign due to low remaining energy, the links between cluster members and 

cluster heads can be broken, and the links between two cluster heads can be generated 

[15].  Consequently, clusters need be re-clustered.  In other words, leaving clusters, 

joining clusters, merging clusters, and re-electing cluster heads are normal re-

clustering operations in a clustered MANET.  However, these operations should be 

performed only on demand to reduce the overhead of computation and 

communication, and to provide consistent quality of service.  

In order to maintain connections with neighbors, detect the link breaks and new 

link establishments, each node needs periodically broadcast HELLO messages.  

Being a cluster head, it has to periodically monitor (after a global transaction 

commits) its remaining energy level so that it will resign from the cluster head status 

when the remaining energy drops below a predefined Low Energy Threshold (LET).  

Relying on these two periodic operations, cluster maintenance can be done by 

recovery from a link break between a member and its cluster head, recovery from a 

link establishment when two cluster heads become 1-hop neighbors, or recovery from 

a link break when a cluster head resigns because its current remaining energy of a 

cluster head is less than LET. The details of these recovery tasks are discussed in [11]. 

4   Proposed Concurrency Control Algorithm: SODA 

In this section, we describe our proposed CC algorithm, called Sequential Order with 

Dynamic Adjustment (SODA).  We first show how SODA works in a centralized 

database as originally presented in [17].  We then discuss how SODA works in a 

clustered MANET database.  

In [17], SODA is proposed for mobile P2P databases, in which each peer carries 

its own local database, is fully autonomous and shares information in on-the-fly 

fashion.  Therefore, although global transactions (or called remote queries) do exist, 

it is unnecessary to maintain the global serializability among peers, which is required 

in traditional distributed databases and MANET databases that we focus on in this 

paper.  However, in mobile P2P databases every peer still needs to guarantee the 

correctness of transactions that it processes locally because it may collect or update its 

own data, reply to requests and update replica simultaneously. 

4.1   How SODA Works in a Centralized Database 

Inspired by the dynamic adjustment technique proposed in [18], and based on the 

combination of Timestamp Ordering (TO), Optimistic Concurrency Control (OCC), 

and backward validation, we propose an optimistic CC algorithm called SODA.  In 

SODA, a list of committed transactions is maintained to validate committing 

transactions.  During the validation, the list can be dynamically adjusted to avoid 

unnecessary aborts.  After the committing transaction commits, the list is updated 

and trimmed. 



Assume that Ti’s (i = 1, …, n) are committed transactions, and T is a 

validating/committing transaction.  If we simply let the validation/commit order be 

the serialization order like in traditional OCC, and if there is a read-write conflict 

between T and Ti, i.e., T reads a common data item d before Ti updates d, then T is 

aborted because two orders are different.  Such aborts should be avoided.  

To avoid such aborts, in SODA, a dynamic order instead of validation order among 

committed transactions is used.  In SODA, a Sequential Order (SO) of committed 

transactions is maintained as {T1, T2, …, Ti, ..., Tn} (also called a history list, which is 

ordered from left to right) and can be dynamically adjusted.  The dynamic 

adjustment consists of simple and complex cases.  In the simple case, the validating 

transaction T can commit if it can be directly inserted into the maintained sequential 

order without adjustment, and the final sequential order will be {T1, T2, …, low, … T, 

up, ..., Tn}, such that T must-be-serialized-after the transaction low but before the 

transaction up.  On the other hand, in the complex case, the sequential order must be 

adjusted before the insertion of T.  After T passes the validation and commits, the 

maintained SO is updated with T’s information.  In addition, old committed 

transactions are removed from the maintained SO to reduce the overhead and save the 

limited storage. 

To prove the correctness (or completeness) of SODA, we must show that any 

schedule produced by SODA is serializable.  To fulfill this goal, we proved that the 

new serialization graph is still acyclic after the addition of any newly committed 

transaction that has passed our validation test.  Further details can be found in [17]. 

4.2   How SODA Works in a Clustered MANET Database 

In order to make SODA work effectively in a clustered MANET database, the 

coordinating server functionality is combined with the cluster head’s functionality 

because a cluster head is elected by our MEW algorithm as described in Section 3 and 

is the nearest server with the highest energy in clients’ neighborhood.  This would 

enable clients to save time, limited battery energy and bandwidth that they must spend 

on identifying suitable servers to which they send their transactions.  Therefore, only 

three major functionalities are required: the primary cluster head functionality, cluster 

head functionality, and participating server functionality as shown in Fig. 2.  Note 

that one server can have all the three functionalities at the same time. 

 

Fig. 2. Transaction flow in a clustered MANET database 



4.2.1   Transaction execution model 

As shown in Fig. 2, a transaction T issued by a client is distributed to its cluster head; 

the cluster head divides T into sub-transactions and transmits them to the appropriate 

participating servers according to the global database schema.  Each participating 

server processes the sub-transactions locally and sends the results back to the cluster 

head.  The cluster head runs the 2-Phase Commit (2PC), and gathers all results from 

the participating servers. Note that we adopt 2PC here due to its simplicity as our 

research goal is to develop a concurrency control algorithm, not a commit algorithm; 

however, we do plan to include a more suitable commit protocol for MANET 

databases in our future work.  If running 2PC successfully, the cluster head sends T 

to the primary cluster head to validate T globally based on the SO of committed 

global transactions; otherwise, the cluster head sends an abort message directly to the 

client. After receiving the global validation result, the cluster head sends the final 

results to the client. 

4.2.2   The primary cluster head functionality 

The primary cluster head has the following functionalities: 

• It maintains the sequential order (SO) of committed global transactions. 

• It receives global transaction validation requests from non-primary cluster 

heads. 

• It validates global transactions using SODA.  After validation, it sends the 

validation results to the non-primary cluster head. 

• It updates the SO after a global transaction commits and adds this global 

transaction’s read set, write set and the timestamp of both sets to the data 

structure of the maintained SO. 

• It removes the old committed transactions that are not serialized after any 

active/committed global transaction from the maintained SO after a global 

transaction commits.  

• It periodically checks (after a global transaction commits) its remaining 

energy level.  If its level is below a predefined threshold LET and another 

cluster head’s remaining level is above the threshold, it resigns its cluster head 

status and elects a new primary cluster head that has the highest remaining 

energy from all cluster heads.  It then transfers the information of all the 

transactions it stores to the new primary cluster head.  Note that since the 

primary cluster head is also a non-primary one, if the primary one resigns, the 

non-primary one also resigns if there is a candidate in the neighborhood. 

4.2.3   The non-primary cluster head functionality 

A non-primary cluster head has the following functionalities: 

• It receives a global transaction from a client, divides them into sub-

transactions, and sends the sub-transactions to appropriate participating 

servers. 



• It runs 2PC to request the status of the sub-transactions and requests the 

timestamps of the global transaction’s read set. 

• It propagates the global transaction to the primary cluster head after it 

receives all successful messages of the sub-transactions. After receiving the 

validation result, it sends the final results to the client.  

• It periodically checks (after a global transaction commits) its remaining 

energy level.  If the level is below a predefined threshold and there is a 

candidate for cluster head in the neighborhood, it resigns its cluster head 

status and elects a new cluster head in the neighborhood.  It then transfers 

the information of all the transactions it stores to the new cluster head.  Note 

that if the old cluster head is also the primary cluster head, then the new 

cluster head can be the new primary cluster head as well if this new one has 

the highest remaining energy among all cluster heads. 

4.2.4   The participating server functionality 

A participating server has the following functionalities: 

• It receives and processes sub-transactions, and maintains the SO of committed 

sub-transactions. 

• It runs SODA locally based on the local SO of committed sub-transactions 

when it receives the request about the status of the sub-transactions. 

• It sends the final status of the sub-transactions to the requesting cluster head. 

It also sends the timestamps of the read sets of the sub-transactions to the 

cluster head if the sub-transactions pass the validation. 

• It updates the local SO of committed sub-transactions if a sub-transaction 

commits and adds this sub-transaction’s read set, write set and timestamps of 

both sets to the data structure of the maintained SO.  It removes the old 

committed sub-transactions that are not serialized after any active/committed 

sub-transaction from the maintained SO after a sub-transaction commits. 

5   Performance Evaluation 

The simulation experiments are conducted to compare the performance of our 

proposed SODA with that of SESAMO [10] as unlike other existing CC for cellular 

mobile databases, SESAMO was specifically designed for MANET databases. 

Our simulation models consist of a transaction generator, a real-time scheduler 

that schedules transactions using early deadline first, participating servers, 

coordinating servers or cluster heads for SODA only, and a deadlock manager for 

SESAMO.  The simulation model of SODA is the same as the transaction execution 

model discussed in Section 4.2.1.  The simulation model for SESAMO is similar to 

the one of SODA except for a couple of points.  First, SODA is applied locally and 

globally to validate transactions, while in SESAMO, strict 2PL is applied locally [19] 

and globally [10].  Second, SESAMO does not elect cluster heads and does not 

apply 2PC; so it may randomly choose a server as the coordinating server. 



5.1   Simulation Parameters and Performance Metrics 

Our simulation models are implemented using the AweSim simulation language [20].  

Global transactions are defined as entities, and mobile modes are defined as resources 

with different initial energy levels and randomly distributed locations.   

The static simulation parameters and their values are shown in Table 1.  We 

conducted experiments to study the impacts of inter-arrival time on the system 

performance, which is the mean of an exponentially distributed time between the 

arrivals of two consecutive transactions.  The inter-arrival time is varied over the 

range from 1 to 10 seconds in order to vary the system load [21] and create a scenario 

with high data contention.   
Table 1. Simulation Parameters 

 

Static Parameters  Value Reference 

Simulation area (m2) 1000x1000 [21] 

Transmission range (m) 250 [22] 

Node moving speed (m/s) 2 [22] 

Total transactions 1000 [21] 

Low Energy Threshold (LET) 50%  

Server energy consumption rate in active mode (watts) 30.3 [23] 

Server energy consumption rate in doze mode (watts) 12.5 [23] 

 

Five performance metrics are used and they are defined in Equations (5), (6), (7), 

(8), and (9), respectively: total time when servers are in active mode, abort rate, total 

number of cluster head reelections, total energy consumed by all servers, and average 

difference in remaining energy between two servers.  Since transactions in mission-

critical applications should be executed not only correctly but also within their 

deadlines, we use firm real-time transactions to evaluate the performance.  In our 

simulation, a transaction will be aborted if either it misses its deadline or the system 

could not complete it successfully (e.g. when it is aborted by the CC technique). 

A server is in active mode only if it is processing transactions; otherwise, it is in 

doze mode to save energy.  The total time when servers are in active mode evaluates 

whether servers are busy to process transactions most of time, where m is the total 

number of servers and Ta,i is the total time when server Si is in active mode. 
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The second performance metric is the abort rate to measure the percentage of 

aborted transactions, and can be computed as below:  
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The third performance metric is the total number of cluster head (primary and non-

primary) reelections to evaluate whether an algorithm takes balancing energy among 

servers into consideration, where Nprimay (Nnon-primay) is the number of primary (non-



primary) cluster head reelections.  However, more reelections do not guarantee more 

balanced energy among servers because there is an overhead of reelections and 

transferring the information from the old cluster head to the new one.  

 primarynonprimay N Ntions ad  reelecluster  heber  of  cTotal  num
−

+=  (7) 

The fourth performance metric is the total amount of energy consumed by all 

servers in both active mode and doze mode.  This metric evaluates how energy-

efficient each technique is, where m is the total number of servers, ECRa (ECRd) is the 

energy consumption rate when a server is in active (doze) mode, and Ta,i (Td,i) is the 

total time when server Si is in active (doze) mode. 
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The fifth performance metric is the average difference in remaining energy 

between two servers to evaluate how balanced the system is in terms of energy 

consumption.  The more balanced the system is, the longer lifetime the system has.  

This metric is computed using the following formula, where m is the total number of 

servers, and REi and REj are the remaining energy of servers Si and Sj, respectively. 
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5.2   Simulation Results 

Fig. 3 shows in both SODA and SESAMO, that the total time when servers are in 

active mode increases when the transaction inter-arrival time increases.  The total 

time of SESAMO is always much longer than SODA’s because SESAMO is 

pessimistic and uses locks to hold limited system resources to prevent conflicting 

transactions from accessing them.  In other words, servers have to be in active mode 

most of time to keep processing transactions. 

 

  
 

Fig. 3. The total time when servers are in active 

mode vs. inter-arrival time 

Fig. 4. The abort rate vs. inter-arrival time 



Fig. 4 shows that the abort rates of SODA and SESAMO decrease when the 

transaction inter-arrival time increases.  The abort rate of SODA is much lower than 

that of SESAMO right after the inter-arrival time is longer than 1 second.  This is 

mainly because SODA is optimistic and non-blocking, and conflicts among 

transactions become rare, so that servers are not in active mode most of time (as 

shown in Fig. 3) and can process transactions in time.  Although SESAMO does not 

enforce global serializability, strict 2PL running both locally and globally still blocks 

many conflicting transactions.  When the inter-arrival time is getting shorter, it is 

easy to see that the abort rate of SODA is close to SESAMO’s because conflicts 

among transactions increase; in addition, this confirms the fact that optimistic CC 

techniques work well only if conflicts among transactions are rare. 

Fig. 5 shows the total number of cluster head reelections of SODA increases as the 

inter-arrival time increases.  When the inter-arrival time reaches 10 seconds, the total 

simulation time is close to 3 hours (1000 transactions * 10 seconds = 10,000 seconds).  

Consequently, more cluster heads’ remaining energy is below the predefined 

threshold LET, and more reelections are triggered to change roles for preserving 

energy.  However, the total number of reelections of SESAMO is always zero 

because its design does not involve any cluster heads.  In other words, SESAMO 

does not rotate roles among servers to balance energy. 

 

 
 

Fig. 5. The total number of cluster head 

reelections vs. inter-arrival time 

Fig. 6. The total energy consumed by all 

servers vs. inter-arrival time 

 

Fig. 6 shows that the total energy consumption of all servers increases with the 

increase of the inter-arrival time.  This is expected because more transactions are 

committed as inter-arrival time increases as shown in Fig. 4, so that each server has to 

spend more time in active mode on processing these committed transactions as shown 

in Fig. 3.  SODA consumes at least 51,124 J and at most 749,727 J less than 

SESAMO right after when the inter-arrival time is longer than 1 second.  This 

happens because transactions arrive into the system with a slow rate, and conflicts 

among transactions become much rarer, so that optimistic SODA performs better than 

pessimistic SESAMO due to no prevention of conflicts overhead. 

The average difference in energy consumption between two servers when varying 

the inter-arrival time is shown in Fig. 7.  Through this metric, we want to check 

whether the energy consumption is balanced among servers.   



It is easy to see that SODA balances 

remaining energy better than SESAMO. 

This is because more non-primary 

cluster heads and primary cluster heads 

with higher energy are reelected as 

shown in Fig. 5.  However, in 

SESAMO, there is no role rotation 

strategy and clients may keep submitting 

transactions to the same servers so that 

these servers are overloaded. 

 
  

Fig. 7. The average difference in remaining 

energy between two servers vs. inter-arrival 

time 

6   Conclusion and Future Research 

In this paper, we introduced a database transaction concurrency control technique, 

called SODA, that can be used to support mission-critical applications such as disaster 

rescue and battlefields in a clustered MANET.  This technique considers transaction 

real-time constraints as well as mobility, energy limitation, and workload of both 

mobile servers and mobile clients in a clustered MANET architecture.  Our solution 

is aimed at reducing transaction abort rate while saving the energy consumption by 

servers and balancing the energy consumption among servers.  With respect to these 

performance metrics, the simulation results show the superiority of SODA over the 

existing technique, SESAMO.  

For future research, we plan to incorporate data replication into our model to 

improve data access time and availability.  We will also investigate the impacts of 

mobility (speed) of mobile nodes, disconnection time and read-only transaction 

percentage on abort rate, response time, total energy consumed by all servers, and 

average difference in remaining energy between two servers.  We also plan to 

investigate alternative commit protocols. 
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