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ABSTRACT 
Mining frequent closed itemsets provides complete and 
condensed information for non-redundant association rules 
generation. Extensive studies have been done on mining frequent 
closed itemsets, but they are mainly intended for traditional 
transaction databases and thus do not take data stream 
characteristics into consideration. In this paper, we propose a 
novel approach for mining closed frequent itemsets over data 
streams. It computes and maintains closed itemsets online and 
incrementally, and can output the current closed frequent itemsets 
in real time based on users’ specified thresholds. Experimental 
results show that our proposed method is both time and space 
efficient, has good scalability as the number of transactions 
processed increases and adapts very rapidly to the change in data 
streams. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining.  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Data stream, frequent closed itemsets, association rules. 

1.   INTRODUCTION 
Frequent closed itemsets provide complete and condensed 
information for non-redundant association rules generation. 
Recently, much research has been done on closed itemsets mining 
[9, 11-13], but it is mainly for traditional databases where 
multiple scans are needed, and whenever new transactions arrive, 
additional scans must be performed on the updated transaction 
database; therefore, they are  not suitable for data stream mining. 
A data stream is an ordered sequence of transactions that arrives 
in a timely order. Different from data in traditional static 
databases, data streams have the following characteristics. First, 
they are continuous, unbounded, and usually come with high 
speed. Second, the volume of data streams is large and usually 
with an open end. Third, the data distribution in streams usually 
changes with time. 

 
As the number of applications on mining data streams grows 

rapidly, such as web transactions, telephone records, and network 
flows, much research on how to get frequent patterns in a data 
stream environment has been conducted. In [2, 7, 10], the authors 
propose algorithms to find frequent itemsets over the entire 
history of data streams. In [3, 5, 8], different sliding window 
models are used to find recently frequent itemsets in data streams. 
These algorithms focus on mining frequent itemsets, instead of 
closed frequent itemsets, with one scan over entire data streams. 

In [4], Chi et al propose the Moment algorithm to mine 
closed frequent itemsets over a data stream sliding window. The 
algorithm maintains a dynamically selected set of itemsets which 
includes four types of nodes: infrequent gateway nodes, 
unpromising gateway nodes, intermediate nodes, and closed 
nodes. For each node, the itemset itself, node type, support and 
sum of the ids of the transactions in which the itemset occurs 
(tid_sum) are stored. These selected itemsets form a boundary 
between closed frequent itemsets and the rest of the itemsets. 
When a new transaction arrives, it checks the closed frequent 
itemsets stored in a hash table with its support and tid_sum 
information to decide its node type according to the node 
properties and incrementally updates the associated nodes’ 
information. Moment judges the closed itemsets indirectly 
through node property checking and excludes them from the other 
three types of boundary nodes stored in the data structure. It 
stores much more information other than the current closed 
frequent itemsets, which consumes much memory, especially 
when the support threshold is low. Furthermore, the exploration 
and node type checking are time consuming.  

In this study, we propose an algorithm, called CFI-Stream, to 
directly compute closed itemsets online and incrementally without 
the help of any support information. Nothing other than closed 
itemsets is maintained in our derived data structure. When a new 
transaction arrives, it performs the closure checking on the fly; 
only associated closed itemsets and their support information is 
incrementally updated. This achieves both time and space 
efficiency, especially when a dataset contains highly correlated 
transactions. The current closed frequent itemsets can be output in 
real time based on any user’s specified thresholds. We then 
conduct simulation experiments using synthetic data sets to 
evaluate the performance of our proposed algorithm. 

The rest of this paper is organized as follows. Section 2 
formally defines the concept of closed itemsets and describes the 
notations to be used throughout the paper. Section 3 presents our 
proposed CFI-Stream algorithm. The performance evaluation is 
depicted in Section 4. Finally, Section 5 concludes the paper. 
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2. PRELIMINARY CONCEPTS 
Let I = {i1, i2, …, in} be a set of n elements, called items. A subset 
X ⊆ I is called an itemset. A k-subset is called a k-itemset. Each 
transaction t is a set of items in I. Given a set of transactions T, 
the support of an itemset X is the percentage of transactions that 
contain X.  

Let T and X be subsets of all the transactions and items 
appearing in a data stream D, respectively. The concept of a 
closed itemset is based on the two following functions, f and g: 
f(T) = {i ∈ I | ∀ t ∈ T, i ∈ t} and g(X) = {t ∈ D  | ∀ i ∈ X, i ∈ t}. 
Function f returns the set of itemsets included in all transactions 
belonging to T, while function g returns the set of transactions 
containing a given itemset X. 
Definition 1 An itemset X is said to be closed if and only if C(X) 
= f(g(X)) = f•g(X) = X where the composite function C = f•g is 
called a Galois operator or a closure operator.  

From the above discussion, we can see that a closed itemset 
X is an itemset whose closure C(X) is equal to itself (C(X) = X). 
The closure checking is to check the closure of an itemset X to 
see whether or not it is equal to itself, i.e. whether or not it is a 
closed itemset. 

3. THE CFI-STREAM ALGORITHM 
In this section, we present our proposed CFI-Stream algorithm 
and in-memory data structure, called DIrect Update (DIU) tree, to 
perform the closure checking online over a data stream sliding 
window. We first give an overview of CFI-Stream. Then, we 
discuss the conditions that we need to check for closed itemsets 
and how we check for them when performing addition and 
deletion operations on the DIU tree. Based on this, we develop an 
online algorithm to discover and incrementally update closed 
itemsets.  

3.1 Algorithm Overview 
When a transaction arrives or leaves the current data stream 
sliding window, the algorithm checks each itemset in the 
transaction on the fly and updates the associated closed itemsets’ 
supports. Current closed itemsets are maintained and updated in 
real time in the DIU tree. The closed frequent itemsets can be 
output at any time at users’ specified thresholds by browsing the 
DIU tree. 

We use a lexicographical ordered DIU tree to maintain the 
current closed itemsets. Each node in the DIU tree represents a 
closed itemset. There are k levels in the DIU tree, each level i 
stores the closed i-itemsets, where k is the maximum length of the 
current closed itemsets. Each node in the DIU tree stores a closed 
itemset, its current support information, and the links to its 
immediate parent and children nodes. Figure 1 illustrates the DIU 
tree after the first four transactions arrive. The support of each 
node is labeled in the upper right corner of the node itself. The 
figure shows that currently there are 4 closed itemsets, C, AB, 
CD, and ABC in the DIU tree, and their associated supports are 3, 
3, 1, and 2. 
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Figure 1. The lexicographical ordered direct update tree 

Different from previous closure checking techniques which 
require multiple scans over data [9, 11-13], our proposed method 
performs the closure checking on the fly with only one scan over 
data streams. It updates only the supports of the associated closed 
itemsets in the DIU tree online, which reduces the computation 
time and provides real time updated results. Our algorithm is an 
incremental algorithm where we check for closed itemsets and 
update their associated supports based on the previous mining 
results.  This is more efficient as compared with mining 
approaches that rescan and regenerate all closed itemsets when a 
new transaction arrives.  

Compared with other data stream mining techniques [4, 8, 
10], we store only the information of current closed itemsets in 
the DIU tree, which is a compact and complete representation of 
all itemsets and their support information. The current closed 
frequent itemsets can be output in real time based on users’ 
specified thresholds by browsing the DIU tree. Also, our 
algorithm handles the concept-drifting problem in data streams by 
storing all current closed itemsets in the DIU tree from which all 
itemsets and their support information can be incrementally 
updated. We discuss the update of the DIU tree and the closure 
checking procedure for addition and deletion operations in 
Sections 3.2 and 3.3.  

3.2 Add a Transaction to the DIU Tree 
In this subsection, we discuss the update and maintenance of the 
DIU tree when a new transaction arrives and its closure check. 

3.2.1 Conditions to Check for Closed Itemsets 
First, we identify and prove the following conditions in which we 
need to check whether an itemset is closed or not when a new 
transaction t arrives in the current sliding window. Condition 1: 
when the newly arrived transaction t is in the original transaction 
set, if the largest itemset X it contains is not currently in the DIU 
tree, we need to check for all X’s subsets Y, which are in the 
original transaction set to see whether they are closed or not. 
Condition 2: when the newly arrived transaction t is not in the 
original transaction set, for each its subset Y, if Y is in the 
original transaction set, we need to check whether it is closed or 
not. Below we prove why we only need to check for closed 
itemsets in the above two conditions. We will use the Lemma 1 
and Corollary 1 in our following proofs. The proof of Lemma 1 is 
given in [9]. Corollary 1 is derived from Lemma 1. 
Lemma 1 Given an itemset X and an item i ∈ I, g(X) ⊆ g(i) ⇔ i 
∈ C(X).  
Corollary 1 Assume CT(X) is X’s closure within transaction set 
T. If CT(X) = X and Y ⊂ X and CT(Y) ⊃ Y,  given an item i, 
where i ∈ CT(Y), i ∉ Y, then we have i ∈ X and CT(Y) ⊆ X.  

When a new transaction t in the data stream arrives, either t 
is or is not included in the original transaction set. Below, we 
discuss the update and maintenance rules under these two 
conditions. In the following proof, we assume X and Y are 
itemsets, T1 is the original set of transactions, T2 is the set of 
transactions after t arrives, CT1(X) is X’s closure in transaction set 
T1, and CT2(Y) is Y’s closure in transaction set T2. 
Case 1: When t is in the original transaction set T1 
For any new coming transaction t with the largest itemset X that  
already exists  in the original transaction set T1, we have gT1(X) ≠ 
φ.  When gT1(X) ≠ φ,  for any itemset Y, gT1(Y) = φ . If Y ⊂ X ⇒ 
gT1(Y) ⊃ gT1(X) ≠ φ.  This is a contradiction with gT1(Y) = φ . 
Therefore this condition does not happen. If Y ⊄ X ⇒ gT2(Y) = 
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gT1(Y) = φ. Thus, we do not need to discuss cases when gT1(Y) = 
φ. When gT1(X) ≠ φ and gT1(Y) ≠ φ, we examine cases according 
to the following conditions: Y ⊄ X and Y ⊆ X. 
Case 1.A: When Y is a subset of X 
When Y is a subset of X, Y ⊆ X, we divide it into two sub 
conditions to analyze: X is or is not in the DIU tree. 
Case 1.A.1: When X is in the DIU Tree 
When X is in the DIU tree, it is a closed itemset, therefore CT1(X) 
= X. We have the following Lemmas 2 and 3. From these two 
lemmas, we show that if a closed itemset X which already exists 
in the DIU tree arrives, for any itemset Y, Y ⊆ X, if Y is 
originally closed, it will remain closed; if Y is originally 
unclosed, Y will remain unclosed, and we only need to update Y’s 
support. Therefore, for most of the existing closed itemsets, we do 
not need to update the DIU tree structure; we simply update their 
supports, which consume a small amount of time. 
Lemma 2 Given T2 = T1 ∪ {X}, if CT1(X) = X and Y ⊆ X and 
CT1(Y) = Y, then we have CT2(Y) = Y.  
Lemma 3 Given T2 = T1 ∪ {X}, if CT1(X) = X and Y ⊂ X and 
CT1(Y) ⊃ Y, then we have CT2(Y) ⊃ Y.  
Case 1.A.2: When X is not in the DIU Tree 
When X is not in the DIU tree, it is not a closed itemset, therefore 
CT1(X) ⊃ X. Similarly, we have the following Lemmas 4 and 5. 
From Lemma 4, we show that if a new closed itemset which is not 
originally in the DIU tree arrives and if its subsets are already in 
the DIU tree, they will remain closed, and thus we simply need to 
update their supports. From Lemma 5, we show that if a new 
closed itemset which is not originally in the DIU tree arrives, then 
we need to add it as a new closed itemset to the DIU tree. 
Lemma 4 Given T2 = T1 ∪ {X}, if CT1(X) ⊃ X and Y ⊂ X and 
CT1(Y) = Y, then we have CT2(Y) = Y.  
Lemma 5 Given T2 = T1 ∪ {X}, if CT1(X) ⊃ X and Y = X, then 
we have CT2(Y) = Y= X.  
Case 1.B: When Y is not a subset of X 
When Y is not a subset of X, Y ⊄ X, we have the following 
Lemma 6. In Lemma 6, we show that if Y is not a subset of X, 
Y’s closure does not change. That is to say that if Y is an 
unclosed itemset before X arrives, then Y will remain unclosed 
after X arrives; and, if Y is a closed itemset before X arrives, then 
Y will remain closed after X arrives. Thus, the DIU tree structure 
does not need to be updated, and we only need to update Y’s 
support. 
Lemma 6 Given T2 = T1 ∪ {X}, if Y ⊄ X, then we have CT2(Y) 
= CT1(Y).  
Case 2: When t is not in the original transaction set T1 
For any new coming transaction t with the largest itemset X that  
has not already appeared in the original transaction set T1, we 
have gT1(X) = φ. We discuss two sub cases according to the 
following conditions: Y ⊄ X and Y ⊆ X. 
Case 2.A: When Y is a subset of X 
When Y is a subset of X, Y ⊆ X, we divide it into two sub 
conditions to discuss: Y exists in the original transaction set T1 or 
Y does not exist in the original transaction set T1. 
Case 2.A.1: When Y is in the original transaction set T1 
When Y is already in the original transaction set T1, then gT1(Y) ≠ 
φ. Because Y ⊆ X, we have gT2(Y) = gT1(Y) ∪ {X}. Therefore, 
CT2(Y) = CT1(Y) ∩ {X}. We will perform the closure checking to 
decide Y’s closure, which will be discussed in Section 3.2.2. 
Case 2.A.2: When Y is not in the original transaction set T1 

When Y does not exist in the original transaction set T1, then 
gT1(Y) = φ. We have the following Lemma 7. In this lemma, we 
prove that when Y is a subset of X, if Y = X, then Y is a closed 
itemset in transaction set T2; and if Y ⊂ X, then Y is not a closed 
itemset in transaction set T2. 
Lemma 7 Given T2 = T1 ∪ {X}, if Y = X, then we have CT2(Y) 
= Y; if Y ⊂ X, then we have CT2(Y) ⊂ Y.  
Case 2.B: When Y is not a subset of X 
When Y is not a subset of X, Y ⊄ X, we divide it into two sub 
conditions to discuss: Y is in the original transaction set T1 or Y 
is not in the original transaction set T1. 
Case 2.B.1: When Y is in the original transaction set T1 
If Y is already in the original transaction set T1, then gT1(Y) ≠ φ. 
We have the following Lemma 8. Similar to Lemma 6, in this 
lemma we prove that when Y is not a subset of X, Y’s closure 
does not change in transaction set T2.  
Lemma 8 Given T2 = T1 ∪ {X}, if Y ⊄ X, then CT2(Y) = CT1(Y).  
Case 2.B.2: When Y is in the original transaction set T1 
If Y is not in the original transaction set, then gT1(Y) = φ. If Y ⊄ 
X, we have gT2(Y) = gT1(Y) = φ, which is meaningless to discuss. 

From the above proofs, we can see that when a new 
transaction arrives, for most cases, the DIU tree structure does not 
change and we only need to update the associated itemsets’ 
supports, which thus reduces  the processing costs. There are only 
two cases that we need to perform the closure check: 1) when 
gT1(X) ≠ φ, gT1(Y) ≠ φ, CT1(X) ⊃ X, and Y ⊂ X; and 2) when 
gT1(X) = φ, gT1(Y) ≠ φ, and Y ⊆ X. We will discuss how to check 
for closed itemsets in the following section. 

3.2.2 Closure Checking for Addition 
The CFI-Stream algorithm checks whether an itemset is closed or 
not on the fly and incrementally with one scan of data streams. 
Below, we discuss the checking procedure when performing the 
addition operation on the DIU tree. In the following Theorem 1, 
we show that for any coming unclosed itemset Y, we can always 
find one and only one closed itemset in the DIU tree equal to Y’s 
closure, such that Xc = C(Y). 
Theorem 1 For any itemset Y, if C(Y) ⊃ Y and g(Y) ≠ φ, then we 
can always find one and only one closed itemset Xc ∈ C, where C 
is a set of existing closed itemsets that satisfies C(Y) = Xc, where 
Y ⊂ Xc.  

From Theorem 1, we know that for any itemset Y, C(Y) ⊃ 
Y, we can find Xc0 with a minimum number of items in it and Xc0 
⊃ Y. For any other Xc1 ⊃ Y, from the above discussion we know 
that g(Xc0) ⊃ g(Xc1). Because Y ⊂ Xc0, then g(Y) ⊇ g(Xc0) ⊃ 
g(Xc1). To find Xc ⊆ C(Y), we have g(Xc) = g(Y); only Xc0 will 
fulfill this requirement. In this way, C(Y) can be found in the 
original transaction set T1. Below, we show how we use this C(Y) 
to check if Y is a closed itemset in transaction set T2 after X 
arrives. 
Corollary 2 Given T2 = T1∪{X}, if CT1(X) ⊃ X and gT1(Y)≠φ, Y 
⊆ X, CT1(Y) ⊃ Y, (CT1(Y)/Y)∩X = φ, then we have CT2(Y) = Y.  

From Corollary 2, we derive a way to check whether Y is 
closed in transaction T2 or not. If (CT1(Y)/Y) ∩ {X} = φ, then Y 
is a closed itemset in T2. We use this condition to perform the 
closed itemset checking on the fly when a new transaction in the 
data streams arrives. 
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3.3 Delete a Transaction in DIU Tree 
In this subsection, we discuss the update and maintenance of the 
DIU tree for the deletion operation, which occurs when a 
transaction leaves the sliding window and its closure check. 

3.3.1 Conditions to Check for Closed Itemsets 
First, we identify and prove the following condition in which we 
need to check whether an itemset is closed or not when an old 
transaction leaves the current sliding window: When the number 
of the transactions with same itemset of X is equal to zero, if Y is 
a subset of X, and Y is a closed itemset in the original transaction 
set, we need to check whether Y is currently closed or not. Below, 
we prove why we only need to check for closed itemsets in the 
above condition. 

When a transaction t, containing a set of items X, is deleted 
from the current sliding window, the number of transactions with 
the same itemsets of X is either greater than or equal to zero. 
Below, we discuss the update and maintenance rules under these 
two conditions. 

In the following proof, we assume X and Y are itemsets,  T1 
is the original set of transactions,  T2 is the set of transactions 
after itemset X leaves,  CT1(X) is X’s closure within transaction 
set T1, and CT2(Y) is Y’s closure under transaction set T2. 
Case 1: When the number of the transactions with the same 
itemset X is greater than zero 
When the number of transactions with the same itemset X is 
greater than zero, we have the following Lemma 9. From this 
lemma, we know that Y’s closure does not change when the 
number of transactions with the same itemset X is greater than 
zero. That is to say that if Y is an unclosed itemset before X 
leaves, Y will remain unclosed after X leaves; and if Y is a closed 
itemset before X leaves, Y will remain closed after X leaves. 
Lemma 9 Given T2 = T1 \ {X}, {X} ⊂ T2, we have CT2(Y) = 
CT1(Y). 
Case 2: When the number of transactions with the same 
itemset X is equal to zero 
When the number of transactions with same itemset of X is equal 
to zero, {X} ⊄ T2, we discuss according to the following two sub 
conditions: Y is not a subset of X and Y is a subset of X.  
Case 2.A: When Y is not a subset of X 
If Y is not a subset of X, we have the following Lemma 10. In this 
lemma, we prove that when {X} no longer exists in transaction 
set T2, Y is not a subset of X and Y’s closure does not change in 
transaction set T2.  
Lemma 10 Given T2 = T1 \ {X}, if {X} ⊄ T2, Y ⊄ X, Y ≠ X, 
then CT2(Y) = CT1(Y).  
Case 2.B: When Y is a subset of X 
If Y is a subset of X, we discuss according to the following sub 
conditions: Y is a closed itemset in transaction set T1 and Y is not 
a closed itemset in transaction set T1. 
Case 2.B.1: When Y is a closed itemset 
When Y is a closed itemset in the transaction set T1, that is to say 
when Y ⊆ X, CT1(Y) = Y, we need to perform the closure check, 
which we will discuss further in Section 3.3.2. 
Case 2.B.2: When Y is not a closed itemset 
When Y is not a closed itemset in transaction set T1, we have the 
following Lemma 11. In this lemma, we prove that when Y is a 
subset of X, Y is not a closed itemset in transaction set T2. 

Lemma 11 Given T2=T1\{X}, if Y⊂ X, CT1(Y)⊂Y, then 
CT2(Y)⊂ Y.  

From the above discussion, we can see that when an old 
transaction leaves the current sliding window, for most cases, the 
DIU tree structure does not change and we need to update only 
the associated supports, which thus reduces the update costs. 
There is only one case in which we need to perform the closure 
check: when {X} ⊄ T2, Y ⊆ X, and CT1(Y) = Y. We will discuss 
how to check for closed itemsets in the following section. 

3.3.2 Closure Checking for Deletion 
The CFI-Stream algorithm checks whether an itemset is closed or 
not on the fly and incrementally updates the DIU tree based on 
the previous mining results with one scan of data streams. Below, 
we discuss the checking procedure for the deletion operation. In 
the following Theorem 2, we show that for any itemset Y, if Y ⊆ 
X, CT1(Y) = Y, {X} ∉ T2, then we can always find CT2(Y) in the 
original closed itemsets. 
Theorem 2 For any itemset Y, if Y⊆X, CT1(Y)=Y, {X}∉ T2, 
then CT2(Y)∈ CT1. That is to say, we can always find CT2(Y) in 
CT1.  

In the following Lemma 12, we prove that when Y is a 
subset of X, {Y} ∈ T2. Y is a closed itemset in transaction set T2. 
Lemma 12 For any itemset Y, if Y ⊂ X, {Y} ∈ T2, we have 
CT2(Y) = Y.  
 From the above discussion, we can see that in the condition 
that we need to perform the closure checking for the deletion 
operation, if {Y} ∈ T2, the Y is closed in the new transaction set 
T2. Below we show how we perform the closure check when {Y} 
∉ T2, and to see if Y is a closed itemset in transaction set T2 after 
X leaves. 
Corollary 3 If Y ⊆ X, {Y} ∉ T2, for all u1, u2, …, ui, …, un 
which satisfies CT2(ui) = ui , Y ⊂ ui, and  CT2(Y) = u1 ∩ u2 ∩ …∩ 
ui ∩ …∩ un.. 

From Corollary 3, we derive a way to check Y’s closure:  if 
CT2(Y) = u1 ∩ u2 ∩ …∩ ui ∩ …∩ un = Y, then Y is a closed 
itemset. We use this rule to perform the closure checking in the 
CFI-Stream algorithm on the fly when old itemsets leave the 
current sliding window. 

3.4 The Algorithm 
Based on our discussions in Sections 3.2 and 3.3, we derive an 
algorithm to perform online checking for closed itemsets over 
data streams. The CIF-Stream algorithm performs an addition 
operation when a new transaction arrives and a deletion operation 
when an old transaction leaves the current sliding window. By 
performing the addition and deletion operations, the CFI-Stream 
algorithm checks each itemset in the transaction on the fly and 
updates the associated closed itemsets’ supports. Current closed 
itemsets are maintained and updated in real time in the DIU tree. 
The closed frequent itemsets can be output any time at the user’s 
request by traversing the DIU tree. 

Algorithm 1 illustrates the addition procedure when an 
itemset X arrives. It first checks if X is in the current closed 
itemsets set C. If X is in C, it updates X’s support, and for all X’s 
subsets Y belonging to C, it updates Y’s supports (lines 3 to 8). 
Otherwise, if X is not in C and X has been included by at least 
one transaction in the original transaction set, it  checks whether it 
is a closed itemset for itself and all its subsets (lines 9 to 36); and 
it updates the associated supports for all the closed itemsets (lines 
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37 to 40). If X is a newly arrived closed itemset and does not exist 
in the DIU tree, the algorithm adds it as a new node to the DIU 
tree (lines 27 to 31). Otherwise, if X is the added transaction 
itself, it adds X into the closed itemset (lines 10-15); if X is the 
subset of added transaction, a closure checking is performed (lines 
16-24). In the following algorithm description, X and Y represent 
itemsets, Xs and Ys represent X’s support and Y’s support, Len(X) 
represents the length of the itemset X, which is the number of 
items in an itemset X, C represents the original closed itemsets in 
the DIU tree, and Cnew represents new closed itemsets in the DIU 
tree after itemset X arrives.  

Algorithm 1  CFI-Stream – Addition 

1: X_close = true; Cnew = φ; 
2: procedure Add(X, C, Cnew) 
3:     if (X ∈ C)                                                                
4:         for all (Y ⊆ X and Y ∈C) 
5:              Ys   support(Y, C) + 1;        
6:         end for 
7:      if (X_close = true)  return; 
8:     else  
9:          if (support(X, C) > 0 ) 
10:                 if(Cnew = φ )             
11:                       X0  X; 
12:                       Cnew  X; 
13:                       X_close = false; 
14:                       Xs   support (X, C) + 1; 
15:                  else                       
16:                       Xc = φ; 
17:                       for all ( K ⊃ X and K ∈ C) 
18:                          if (len(K)<len(M) then M=K; 
19:                       end for 
20:                       Xc  M;                      
21:                       if ((Xc/X) ∩ X0 = φ and Xc ≠ φ )  
22:                           Cnew  Cnew ∪ X; 
23:                           Xs  support(X, C) + 1; 
24:                       end if 
25:                  end if 
26:          else  
27:                 if (Cnew = φ ) then           
28:                     X0  X; 
29:                     Cnew  X; 
30:                      Xs = 1; 
31:                 end if 
32:          end if 
33:      end if 
34:      for all (m ⊂ X and Len(m) = Len(X)-1 
35:                    call Add(m, C, Cnew); 
36:      end for 
37:       if (X = X0) 
38:           C  C ∪ Cnew; 
39:           support(X, C) = Xs; 
40:       end if 
41: end procedure  

Algorithm 2 illustrates the procedure to perform the deletion 
operation when an itemset X leaves the current sliding window. 
CFI-Stream first checks if X is in the current closed itemsets set C 
and its count is greater or equal to two; if so, it updates X’s 
support and X’s subsets’ support belonging to C (lines 3 to 6). 
Otherwise, it checks the itemset X and all its subsets which are in 

the current closed itemset C to see whether they are still closed 
itemsets (lines 8 to 26) and updates the support for all its subsets 
that are in the current closed itemsets (lines 28 to 29). If the 
subset Y exists in transaction, Y should keep closed (lines 11-13). 
Otherwise a closure check for the subset Y is performed (lines 14-
22). In the following figure, Cobsolete represents the itemsets that 
are no longer closed after transaction {X} leaves. 
Algorithm 2  CFI-Stream – Deletion 

1: Cobsolete = φ; 
2: procedure Delete (X, C, Cobsolete) 
3:     if (count(X) ≥ 2) then         
4:         for all (Y ⊆ X and Y ∈C) 
5:              Ys   support(Y, C) – 1; 
6:         end for 
7:     else  
8:            length = Len(X); 
9:            for all (len≥1) 
10:                 for all ( Y ⊆ X and Y ∈C and Len(Y) = length)  
11:                      if (count(Y) ≥2) then  
12:                         Ys   support(Y, C) – 1;                      
13:                      else  
14:                         M = I; 
15:                         for all ( U ⊃ Y and U ∈C) 
16:                              M = M ∩ U; 
17:                         end for 
18:                         if (M = Y) then 
19:                             Ys   support(Y, C) – 1; 
20:                         else 
21:                             Cobsolete= Cobsolete ∪ Y; 
22:                         end if 
23:                       end if 
24:                   end for 
25:                   length = length-1; 
26:             end for 
27:       end if 
28:       C  C \ Cobsolete 
29:       support(Y, C) = Ys; 
30: end procedure 

4. PERFORMANCE EVALUATION 
We compare our algorithm with Moment [4], which is the state-
of-the-art algorithm to mine closed itemsets in data streams. For 
performance evaluation, the synthetic datasets T10.I6.D100K and 
T5.I4.D100K-AB are used. Each dataset is generated by the same 
method as described in [1], where the three numbers of each 
dataset denote the average transaction size (T), the average 
maximal potential frequent itemset size (I) and the total number 
of transactions (D), respectively. In all experiments, the 
transactions of each dataset are looked up one by one in sequence 
to simulate the environment of an online data stream.  

Figure 2 shows the average processing time for Moment and 
CFI-Stream over the 100 sliding windows under different 
minimum supports for the dataset T10.I6.D100K. As the 
minimum support decreases, the running time for Moment 
increases, since the number of closed frequent itemsets and the 
boundary nodes increases. For CFI-Stream, the running time is 
independent of the support information since it discovers and 
maintains all closed itemsets in the DIU tree. As the number of 
closed itemsets that exists in the DIU tree increases, they do not 
need to be reprocessed; only their supports need to be updated 
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incrementally, therefore less processing time is needed per 
transaction. Also we can see from Figure 2 that CFI-Stream runs 
much faster than Moment when the support threshold is relatively 
low, because the number of boundary nodes stored in the data 
structure of Moment increases when the support threshold drops; 
as the number of nodes to be processed and checked for node 
property increase, execution time increases. When the support 
threshold is relatively high, these two algorithms have comparable 
running time. Moment runs a little faster than CFI-Stream as the 
threshold increases. This is because as the threshold creases, the 
number of the boundary nodes in Moment decreases, while CFI-
Stream processes the same number of all the closed itemsets 
independent of support information. This is especially beneficial 
when users have different specified support thresholds in their 
online queries. 

 
Figure 2. Runtime performance (T10.I6.D100K) 

Figure 3 shows the memory usage in terms of the maximum 
number of itemsets of Moment and CFI-Stream for the dataset 
T10.I6.D100K. The memory usage for Moment increases when 
the minimum support decreases. This is because the number of 
itemsets it keeps track of increases. The memory usage remains 
almost the same when the support changes in CFI-Stream. This is 
because CFI-Stream stores all closed itemsets in the DIU tree 
independently of the support information. The overall memory 
usage is proportional to the number of closed itemsets in the 
dataset. Also we can see from the figure that CFI-Stream 
consumes much less memory space than Moment when the 
support threshold is low, because when the user defined support 
threshold is small, the number of nodes it maintains in the 
memory increases dramatically, which includes all the infrequent 
gateway nodes, unpromising gateway nodes, intermediate nodes, 
and closed nodes. As the support threshold increases, the memory 
usage of Moment drops. These two algorithms consume almost 
the same amount of memory space. Moment takes slightly a 
smaller amount of memory space than CFI-Stream. This is 
because CFI-Stream stores all closed itemsets in the DIU tree so 
that the frequent closed itemsets can be output based on any user-
specified thresholds in real time. We can see that CFI-Stream is 
especially efficient for dense datasets in which the ratio between 
the number of frequent closed itemsets and the corresponding 
number of frequent itemsets is large. 
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Figure 3. Memory usage (T10.I6.D100K) 

5. CONCLUSIONS 
In this paper we proposed a novel algorithm, CFI-Stream, to 
discover and maintain closed frequent itemsets in the current data 
stream sliding window. The algorithm offers an incremental 
method to check and maintain closed itemsets online. All closed 
frequent itemsets in data streams can be output in real time based 
on users’ specified thresholds. Our performance studies show that 
this algorithm is able to mine data streams online with both time 
and space efficiency independent of support information, and it 
can adapt to the concept-drifting in data streams. Experimental 
results show that our method can achieve better performance than 
a representation algorithm for the state-of-the-art approaches in 
terms of both time and space overhead, especially when the 
minimum support is low, and the dataset is dense. In the future, 
we plan to extend our proposed algorithm to different data stream 
applications. 
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